| 研究生: |
詹承諺 Zhang, Cheng-Yan |
|---|---|
| 論文名稱: |
社群偵測應用於精準行銷之研究 A study on the application of community detection to precision marketing |
| 指導教授: |
徐立群
Shu, Lih-Chyun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 會計學系 Department of Accountancy |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 社群偵測 、精準行銷 、Louvain演算法 、二分圖 、解析度 |
| 外文關鍵詞: | Community detection,, precision marketing,, Louvain algorithm, bipartite |
| 相關次數: | 點閱:77 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討了社群偵測技術在精準行銷領域的應用潛力與成效。本研究的方法與一般利用分群演算法將顧客和商品進行分群的傳統方式不同,我們根據顧客購買記錄計算其與商品之間的購買次數。根據這些資訊,建立了顧客與產品之間的二分圖,然後在此基礎上運用社群偵測技術將顧客與產品分群,目標是分到同群的顧客與產品代表該群顧客對同群產品的偏好勝過對它群產品的偏好。為了提升社群偵測分群的精確度和適用性,本研究在基礎社群偵測演算法中引入了解析度參數。通過逐步提高解析度,我們找到較佳的分群方式,減少每個分群中的顧客與商品的數量,讓分群結果更加清晰易懂,最重要的是新的分群結果顯著提高了顧客回應率,因而驗證了社群偵測技術在精準定位顧客對產品之主要喜好,同時提升行銷績效上的價值。
This study explores the potential and effectiveness of community detection technology in the field of precision marketing. Unlike traditional methods that use clustering algorithms to categorize customers and products, our approach calculates the purchase frequency between customers and products based on customer purchase records. Utilizing this information, we construct a bipartite graph between customers and products. Then, building on this foundation, we apply community detection technology to cluster customers and products. The goal is to group customers and products in such a way that customers in the same group have a stronger preference for products in their group compared to products in other groups. To enhance the accuracy and applicability of clustering based on community detection, this study introduces a resolution parameter into the basic community detection algorithm. By gradually increasing the value of resolution, we discover new ways of clustering, reducing the number of customers and products in each group, making the clustering results clearer and more understandable. Most importantly, the new clustering results significantly improve customer response rates, thereby validating the value of community detection technology in precisely targeting customers' primary preferences for products while enhancing marketing performance.
Asratian, A. S., Denley, T. M., & Häggkvist, R. (1998). Bipartite graphs and their applications (Vol. 131). Cambridge university press.
Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008(10), P10008.
Faridizadeh, S., Abdolvand, N., & Rajaee Harandi, S. (2018). Market basket analysis using community detection approach: A real case. In Applications of data management and analysis (pp. 177-198). Springer, Cham.
Fortunato, S., & Barthelemy, M. (2007). Resolution limit in community detection. Proceedings of the national academy of sciences, 104(1), 36-41.
Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the national academy of sciences, 99(12), 7821-7826.
Kazienko, P., Musial, K., & Kajdanowicz, T. (2011). Multidimensional social network in the social recommender system. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 41(4), 746-759.
Khalemsky, A., & Gelbard, R. (2020). A dynamic classification unit for online segmentation of big data via small data buffers. Decision Support Systems, 128, 113157.
Krings, G., & Blondel, V. D. (2011). An upper bound on community size in scalable community detection. arXiv preprint arXiv:1103.5569.
Lauterborn, B. (1990). New marketing litany: four Ps passé: C-words take over.
Marcus, C. (1998). A practical yet meaningful approach to customer segmentation. Journal of consumer marketing.
Mesforoush, A., & Tarokh, M. J. (2013). Customer profitability segmentation for SMEs case study: network equipment company. International Journal of Research in Industrial Engineering, 2(1), 30-44.
Needham, M., & Hodler, A. E. (2019). Graph algorithms: practical examples in Apache Spark and Neo4j. O'Reilly Media.
Newman, M. E. (2004). Analysis of weighted networks. Physical review E, 70(5), 056131.
Newman, M. E., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical review E, 69(2), 026113.
Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect community structures in large-scale networks. Physical review E, 76(3), 036106.
Reichardt, J., & Bornholdt, S. (2006). Statistical mechanics of community detection. Physical review E, 74(1), 016110.
Smith, W. R. (1956). Product differentiation and market segmentation as alternative marketing strategies. Journal of marketing, 21(1), 3-8.
Traag, V. A., Waltman, L., & Van Eck, N. J. (2019). From Louvain to Leiden: guaranteeing well-connected communities. Scientific reports, 9(1), 5233.
Ugander, J., Karrer, B., Backstrom, L., & Marlow, C. (2011). The anatomy of the facebook social graph. arXiv preprint arXiv:1111.4503.
Wei, J. T., Lee, M. C., Chen, H. K., & Wu, H. H. (2013). Customer relationship management in the hairdressing industry: An application of data mining techniques. Expert Systems with Applications, 40(18), 7513-7518.
Xiang, J., & Hu, K. (2012). Limitation of multi-resolution methods in community detection. Physica A: Statistical Mechanics and its Applications, 391(20), 4995-5003.
Yang, X., Li, H., Ni, L., & Li, T. (2021). Application of artificial intelligence in precision marketing. Journal of Organizational and End User Computing (JOEUC), 33(4), 209-219.
Zhang, L., Priestley, J., DeMaio, J., Ni, S., & Tian, X. (2021). Measuring customer similarity and identifying cross-selling products by community detection. Big Data, 9(2), 132-143.
校內:2029-02-06公開