簡易檢索 / 詳目顯示

研究生: 李嘉倫
Lee, Chia-Lun
論文名稱: 微分餾和檢測二氧化硫流體晶片之製作與研究
SO2 Distillation and Detection by Means of Microfluidic Chip
指導教授: 楊瑞珍
Yang, Ruey-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 61
中文關鍵詞: 二次離焦加工法微流體分餾晶片分餾效率微型二氧化硫分餾系統
外文關鍵詞: Laser defocus (twice) processing, Microfluidic distillation chip, Distillation efficiency, Miniaturized SO2 distillation system
相關次數: 點閱:75下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用一個微機電製程技術,以SO2傳統檢測之原理為基礎,將加熱與冷卻裝置設計於壓克力微流體分餾晶片,接著將微型加熱器與熱電致冷晶片封裝於壓克力微流體分餾晶片。實驗結果發現此微型化分餾系統能有效將SO2與DI-water分離。本文研究內容包含三個部分: 檢測、玻璃微管道製程與微型化分餾系統。
    第一部分,依據傳統檢測方法來配置H2SO3與混合指示劑而後採用分光光度計來偵測SO2,發現SO2分光波長為430 nm,H2SO3與混合指示劑必須經過900秒後才能達到完全化學反應。固定波長 430 nm偵測100~500 ppm與50~250 ppm之SO2吸光度,然後繪製SO2標準曲線與線性判定係數R2值,皆可得高線性R2>0.995;此外亦利用自組式LED 430 nm來偵測SO2,將電壓控制於3 伏特,偵測 100-500 ppm SO2亦可得高線性度R2。
    第二部分,我們採用borofloat®33作為基材,利用CO2 laser快速Borofloat®33 製作微管道,其加工方式包含單次聚焦、聚焦後離焦、單次離焦與二次離焦加工方法於borofloat®33快速製作無裂痕之微管道。實驗結果得知:利用CO2 laser且採用二次離焦加工方式於borofloat®33 快速製作微管道,經由儀器測量與觀察管道壁面的粗糙度與深度,可獲得低粗糙度Ra之高品質微管道。
    第三部分,利用CO2 laser於PMMA快速製作微流體分餾晶片,並且將微型加熱器、熱電致冷晶片、電源控制器與微流體分餾晶片整合於SO2分餾系統。由於我國食品檢測局法規規定的一般食品與水果酒類含SO2的限度250 ppm,故本研究首先配置H2SO3濃度分別為50、100、150、200、250 ppm,然後利用此偵測系統將SO2與DI-water分餾。當H2SO3中含SO2為150、200、250 ppm時,SO2分餾率皆可達77%以上,當H2SO3中含SO2為250 ppm時其SO2分餾率為90.2%,但於50、100 ppm時其SO2分餾效果較不明顯,故此微型二氧化硫分餾系統之SO2分餾極限為100 ppm。
    相較於傳統大型檢測儀器,本微型化裝置具有價格便宜、體積小且方便攜帶之優點。相信於不久的將來,本裝置所提供分餾與檢測平台將對未來此領域之研究有莫大之助益。

    Traditional sulfur dioxide (SO2) distillation equipment is confined to the laboratory as it is bulky and heavy. The objective of this study is to improve the SO2 detection systems using Micro-electro-mechanical systems (MEMS) technology reducing volume thereby making the device portable. This study designs a microfluidic distillation chip, which contains a serpentine channel and two important components: a heater and a cooling zone to manipulate thermal control. The temperature is controlled by adjusting the micro-heater and thermoelectric cooling chip. This research comprises three parts: detection, glass-based microchannel processing, and miniaturized SO2 distillation system. The experimental results show that this miniaturized SO2 distillation system can successfully separate sulfurous acid (H2SO3) into SO2 and DI-water.
    This study employs the traditional detection method to prepare the H2SO3 and the mixed indicator before utilizing the spectrophotometer to measure the absorbance and plot the SO2 calibration curves and the R2 value (coefficient of determination). During the experiment, we discover that the wavelength of SO2 is 430 nm and that the blending of H2SO3 with the mixed indicator requires 900 seconds to complete the chemical reaction and reach a stable state. We use the spectrophotometer and fix the wavelength of SO2, and then detect SO2 (concentration 100 to 500 parts per million (ppm) and 50 to 250 ppm). Both experimental results indicate that the R2 values are greater than 0.995. Utilizing the miniaturized LED detection system (with the wavelength of 430 nm) to detect SO2, the experimental results indicate that the R2 value is greater than 0.995.
    Borofloat® 33 is a new borosilicate glass material. This study attempts to develop the fabrication of a crack-free microchannel with high surface quality on a substrate, using CO2 laser ablation. This requires four fabricating processes, as follows: focus (once), focus first then defocus, defocus (once), defocus (twice) at the same power, and scanning speed for fabricating a microchannel. The application of the CO2 laser defocus (twice) processing method onto the borofloat® 33 substrate can result in rapid fabrication of a high quality crack-free microchannel with smooth walls and a low roughness value.
    The miniaturized SO2 distillation system includes polymethylmethacrylate (PMMA)-based microfluidic distillation chip, a power control module, and an air pressure control module. Due to the Taiwan Food Sanitation Management Act rules, the concentration content of common wine cannot exceed 250 ppm. As such, H2SO3 are prepared with concentrations of 50, 100, 150, 200, and 250 ppm. The experimental results indicate that when the concentrations of H2SO3 are 150, 200, and 250 ppm, this device can obtain good SO2 distillation efficiency greater than 77 %. When the concentration of H2SO3 is 250 ppm, this device can obtain SO2 distillation efficiency as high as 90.2 %. However when the concentrations of H2SO3 are 50 and 100 ppm, this device cannot achieve efficient distillation. Therefore, the distillation detection limit of this device is 100 ppm. Overall, the developed system is a powerful platform for integrating the functions of sample heating, cooling, separation, and distillation in a compact and portable case.

    Abstract I 中文摘要 III 致謝 V Table of Contents VI Nomenclature IX Abbreviation XI List of Tables XII List of Figures XIII Chapter 1. Introduction 1 1.1 Background 1 1.2 MEMS technologies on distillation applications 1 1.3 SO2 chemical properties 3 1.3.1 Sulfites in body metabolism reaction 3 1.3.2 Toxic effect of SO2 4 1.3.3 Traditional SO2 detection method 4 1.4 CO2 laser fabrication of microchannel 5 1.4.1 Laser introduction 5 1.4.2 CO2 laser processing 6 1.5 Motivation and objectives 7 1.6 Thesis organization 9 2. Literature review 10 2.1 CO2 laser fabrication of a microchannel on a PMMA substrate 10 2.2 CO2 laser fabrication microchannel on a glass substrate 11 2.3 Microdistillation chip 12 3. Experimental methods and procedures 18 3.1 Fabricating crack-free microchannel in borofloat ® 33 utilizing a CO2 laser 18 3.1.1 Experimental procedure 18 3.1.2 Glass annealing 18 3.1.3 Glass substrate cleaning 19 3.1.4 Glass micromachining by CO2 laser direct writing and surface quality measurements 19 3.2 Traditional SO2 detection method 20 3.2.1 Reagents and solutions 20 3.2.2 Spectrophotometer method and mechanisms 20 3.3 Fabricating PMMA-based microfluidic distillation chip utilizing a CO2 laser 21 3.3.1 Microfluidic distillation chip fabrication 21 3.3.2 PMMA-based microfluidic chip with aluminum sheets bonding 22 3.3.3 PMMA with heater and thermoelectric cooling chip bonding 23 3.3.4 Experimental setup 23 4. Results and Discussion 32 4.1 Application of CO2 laser in rapid processing of microchannels in borofloat®33 substrates 32 4.2 Traditional SO2 detection 36 4.3 Miniaturized LED lighting system experiment 38 4.4 Miniaturized SO2 distillation system experiment 38 5. Summary. 53 5.1 Conclusion of the experiment. 53 5.1.1 CO2 laser fabrication of glass-based microchannel 53 5.1.2 SO2 detection 54 5.1.3 The miniaturized SO2 distillation system 54 5.2 Research contributions. 55 5.3 Future work. 56 References 57 Biography 61

    1. Feynman R., There’s Plenty of Room at the Bottom, Journal of Micro Electromechanical, 1992, 1, pp. 60-66.
    2. Zimmerman, William B. J., Microfluidics :history, theory and applications 2006, New York: Springer.
    3. Reyes D. R., Iossifidis D., Auroux P. A. and Manz A., Micro total analysis systems. 1. Introduction, theory, and technology, Analytical Chemistry, 2002,74(12),2623-2636.
    4. Auroux P. A., Iossifidis D., Reyes D. R. and Manz A., Micro total analysis systems. 2. Analytical standard operations and applications, Analytical Chemistry, 2002,74(12),2637-2652.
    5. Kopp M. U., DeMello A. J. and Manz A., Chemical amplification: Continuous-flow PCR on a chip, Science, 1998,280(5366),1046-1048.
    6. Manz A., Graber N. and Widmer H. M., Miniaturized Total Chemical-Analysis Systems - a Novel Concept for Chemical Sensing, Sensors and Actuators B-Chemical, 1990,1(1-6),244-248.
    7. Kusakabe K. and Sotowa K. I., in Proceedings of the 7th International Conference on Microreaction Technology (IMRET7). 2003: Lausanne.
    8. Green L. F., Sulphur dioxide and food preservation—A review Food Chemistry, 1976,1(2),103-124.
    9. Voegele A. F., Loerting T., Tautermann C. S., Hallbrucker A., Mayer E. and Liedl K. R., Sulfurous acid (H2SO3) on Io?, Icarus, 2004,169(1),242-249.
    10. Voegele A. E., Tautermann C. S., Loerting T., Hallbrucker A., Mayer E. and Liedl K. R., About the stability of sulfurous acid (H2SO3) and its dimer, Chemistry-a European Journal, 2002,8(24),5644-5651.
    11. Mataix E. and Decastro M. D. L., Determination of total and free sulfur dioxide in wine by pervaporation-flow injection, Analyst, 1998,123(7),1547-1549.
    12. Cmelik J., Machat J., Niedobova E., Otruba V. and Kanicky V., Determination of free and total sulfur dioxide in wine samples by vapour-generation inductively coupled plasma-optical-emission spectrometry, Analytical and Bioanalytical Chemistry, 2005,383(3),483-488.
    13. Adams J. B., Food additive-additive interactions involving sulphur dioxide and ascorbic and nitrous acids: A review, Food Chemistry, 1997,59(3),401-409.
    14. Gunnison A. F., Sulfite Toxicity - a Critical-Review of Invitro and Invivo Data, Food and Cosmetics Toxicology, 1981,19(5),667-682.
    15. Fujita Koichi, Ikuzaea Makiko, Izumi Tetsuo, Hamano Takashi, Mitsuhashi Yukimasa, Matsuki Yukio, Adachi Tadao, Nonogi Hiroko, Fuke Tazu and Suzuki Hidey, et al., Establishment of a Modified Rankine Method for the Separate Determination of Free and Combined Sulphites in Foods. III.*, Z. Lebensm. Unters. Forsch., 1979,168,206-211.
    16. 日本藥學會, Standard methods of analysis for hygienic chemists. 昭和32, 東京都: 金原.
    17. Hitz Breck, Ewing J. J., Jeff Hecht., Introduction to laser technology 2001, New York: IEEE Press.
    18. Oakley, Crafter R. C. and P.J., Laser processing in manufacturing 1993, London: Chapman & Hall,.
    19. Snakenborg D., Klank H. and Kutter J. P., Microstructure fabrication with a CO2 laser system, Journal of Micromechanics and Microengineering, 2004,14(2),182-189.
    20. Wei C. Y., He H. B., Deng Z., Shao J. D. and Fan Z. X., Study of thermal behaviors in CO2 laser irradiated glass, Optical Engineering, 2005,44(4),-.
    21. Li J. F., Li L. and Stott F. H., Thermal stresses and their implication on cracking during laser melting of ceramic materials, Acta Materialia, 2004,52(14),4385-4398.
    22. Yamamoto K., Hasaka N., Morita H. and Ohmura E., Influence of glass substrate thickness in laser scribing of glass, Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology, 2010,34(1),55-61.
    23. Yamamoto K., Hasaka N., Morita H. and Ohmura E., Crack Propagation in Glass by Laser Irradiation Along Laser Scribed Line, Journal of Manufacturing Science and Engineering-Transactions of the Asme, 2009,131(5).
    24. Romoli L., Tantussi G. and Dini G., Layered laser vaporization of PMMA manufacturing 3D mould cavities, Cirp Annals-Manufacturing Technology, 2007,56(1),209-212.
    25. Huang M. D., Becker-Ross H., Florek S., Heitmann U. and Okruss M., Direct determination of total sulfur in wine using a continuum-source atomic-absorption spectrometer and an air-acetylene flame, Analytical and Bioanalytical Chemistry, 2005,382(8),1877-1881.
    26. Romoli L., Tantussi G. and Dini G., Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices, Optics and Lasers in Engineering, 2011,49(3),419-427.
    27. Li J. M., Liu C., Liu J. S., Xu Z. and Wang L. D., Multi-layer PMMA microfluidic chips with channel networks for liquid sample operation, Journal of Materials Processing Technology, 2009,209(15-16),5487-5493.
    28. Klank H., Kutter J. P. and Geschke O., CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems, Lab on a Chip, 2002,2(4),242-246.
    29. Qi H., Chen T., Yao L. Y. and Zuo T. C., Micromachining of microchannel on the polycarbonate substrate with CO2 laser direct-writing ablation, Optics and Lasers in Engineering, 2009,47(5),594-598.
    30. Hong T. F., Ju W. J., Wu M. C., Tai C. H., Tsai C. H. and Fu L. M., Rapid prototyping of PMMA microfluidic chips utilizing a CO2 laser, Microfluidics and Nanofluidics, 2010,9(6),1125-1133.
    31. Allcock G., Dyer P.E., Elliner G., Snelling H.V., Experimental observations and analysis of CO2 laser‐induced microcracking of glass, Journal of Applied Physics, 1995,78(12),7295 - 7303
    32. Zheng H. Y. and Lee T., Studies of CO2 laser peeling of glass substrates, Journal of Micromechanics and Microengineering, 2005,15(11),2093-2097.
    33. Yen M. H., Cheng J. Y., Wei C. W., Chuang Y. C. and Young T. H., Rapid cell-patterning and microfluidic chip fabrication by crack-free CO2 laser ablation on glass, Journal of Micromechanics and Microengineering, 2006,16(7),1143-1153.
    34. Chung C. K., Liao M. W. and Lin S. L., Effect of nonionic surfactant addition on Pyrex glass ablation using water-assisted CO2 laser processing, Applied Physics a-Materials Science & Processing, 2010,99(1),285-290.
    35. Chung C. K., Chang H. C., Shih T. R., Lin S. L., Hsiao E. J., Chen Y. S., Chang E. C., Chen C. C. and Lin C. C., Water-assisted CO2 laser ablated glass and modified thermal bonding for capillary-driven bio-fluidic application, Biomedical Microdevices, 2010,12(1),107-114.
    36. DeMello A. J., Wooton R. C. R., Continuous laminar evaporation: micron-scale distillation, The Royal Society of Chemistry, 2004,266-267.
    37. Kralj J. G., Sahoo H. R. and Jensen K. F., Integrated continuous microfluidic liquid-liquid extraction, Lab on a Chip, 2007,7(2),256-263.
    38. Hibara A., Toshin K., Tsukahara T., Mawatari K. and Kitamori T., Microfluidic Distillation Utilizing Micro-Nano Combined Structure, Chemistry Letters, 2008,37(10),1064-1065.
    39. Zhang Y. P., Kato S. J. and Anazawa T., Vacuum membrane distillation on a microfluidic chip, Chemical Communications, 2009,(19),2750-2752.
    40. Zhang Y. P., Kato S. and Anazawa T., Vacuum membrane distillation by microchip with temperature gradient, Lab on a Chip, 2010,10(7),899-908.
    41. Hartman R. L., Sahoo H. R., Yen B. C. and Jensen K. F., Distillation in microchemical systems using capillary forces and segmented flow, Lab on a Chip, 2009,9(13),1843-1849.

    下載圖示 校內:2013-08-25公開
    校外:2013-08-25公開
    QR CODE