| 研究生: |
林柏瑺 Lin, Po-Chang |
|---|---|
| 論文名稱: |
物理氣相傳輸法生長碳化矽單晶之模擬分析 Simulation and Analysis of Silicon Carbide Crystal Growth by Physical Vapor Transport |
| 指導教授: |
黃文星
Hwang, Weng-Sing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 碳化矽 、物理氣相傳輸法 、數值模擬 |
| 外文關鍵詞: | silicon carbide, physical vapor transport, numerical simulation |
| 相關次數: | 點閱:82 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用物理氣相傳輸法(Physical vapor transport method)生長大尺寸(4吋以上)的單晶碳化矽為目前最常見的方式,本研究以數值方法分析4吋單晶碳化矽在高溫石墨長晶爐內生長時的溫度場、流場和應力場之間的相互影響,以有限差分法作為數值分析基礎。
由溫度場模擬結果顯示,坩堝構形會對溫度場分佈有很大的影響,本研究討論坩堝蓋與坩堝壁厚度對溫度場之影響,坩堝蓋厚度增加可以減少徑向溫度梯度,而坩堝壁厚度增加則會同時增加軸向溫度梯度與徑向溫度梯度。長晶速度會隨著軸向溫度差增加而上升,而徑向溫度則是會改變熱應力分佈,進而影響缺陷的產生。為了提升晶體生長的速度與品質,同時維持高軸向溫度差和低徑向溫度差的溫度分佈為改善生長晶體品質的重點。
流場的模擬結果顯示坩堝內部構形會改變流場的分佈,對晶體生長速度會造成影響,適當的坩堝構型設計,可以在提升長晶速度的同時,避免造成長晶速度不均勻的分佈而增加缺陷產生的機會。在粉末晶源區的溫度分佈也會影響流場的分佈,其中反應氣氛主要由高溫區產生,在低溫區反應氣氛則會再結晶阻礙反應氣氛流動,保持粉末晶源區之溫度平均分佈為改善粉末晶源使用效率之重要因素。
應力場模擬結果也顯示了晶體形貌對熱應力影響,較平坦的晶體表面會有較低的熱應力,預期可以減少缺陷產生的機率,其中最大應力會集中在晶體中心位置,可以預測晶體中心是比較容易產生缺陷的位置。
本研究藉由上述的模擬結果,提出坩堝構型的改進方向,在提升長晶速度的同時維持晶體平坦的生長面,預期可以減少熱應力造成的缺陷,達到改善晶體品質之目的。
Physical vapor transport (PVT) method is the major used method in growing large size single crystal silicon carbide (SiC) bulk. In this study, temperature, flow and thermal stress field is analyzed in numerical system by finite difference method.
From the simulation result of temperature field, the effect of different crucible lid thickness and crucible wall thickness is discussed in this study. The increasing of crucible lid thickness increases the axial temperature gradient, and the increasing of crucible wall thickness increases both axial and radial temperature gradient. The higher radial temperature gradient lead to higher crystal growth rate. The axial temperature gradient change may affect the formation of defects.
Proper crucible design can increase the crystal growth rate and avoid large growth rate distribution which may increase the formation of defects. In the powder source region, temperature distribution also influence the species flow distribution. The reaction species is produced mainly from the hotter zone, and will be consumed in the cooler zone in the powder source region which will block the species transport. Maintaining the average temperature distribution in the powder source region is the key to ameliorate powder source usage efficiency.
The thermal stress simulation results showed the relationship between thermal stress and crystal shapes. Crystal with flat surface shape have lower thermal stress distribution, and crystal with convex surface have higher thermal stress distribution.
To sum up, a modified crucible design guide is brought up to improve the crystal growth quality and productivity by increasing growth rate and avoiding thermal stress defects.
[1] K. Semmelroth, N. Schulze and G. Pensl, “Growth of SiC polytypes by the physical vapour transport technique”, Journal of Physics: Condensed Matter, vol. 16, pp.1597-1610, 2004.
[2] H. Li, X.L. Chen, D.Q. Ni and X.Wu, “An analysis of seed graphitization for sublimation growth of SiC bulk crystal”, Diamond and Related Materials, vol. 13, pp. 151-156, 2004.
[3] J. Liu, J. Gao, J. Cheng, J. Yang and G. Qiao, “Effects of graphitization degree of crucible on SiC single crystal growth process”, Diamond and Related Materials, vol. 15, pp. 117-120, 2006.
[4] Z.G. Herro, B.M. Epelbaum, M. Bickermann, P. Masri and A. Winnacker, “Effective increase of single-crystalline yield during PVT growth of SiC by tailoring of temperature gradient”, Journal of Crystal Growth, vol. 262, pp.105-112, 2004.
[5] M. Seldera, L. Kadinskia, F. Dursta and D. Hofmannb, “Global modeling of the SiC sublimation growth process:prediction of thermoelastic stress and control of growthconditions”, Journal of Crystal Growth, vol. 13, pp.501-510, 2001.
[6] Z.B. Zhang, J. Lu, Q.S. Chen and V. Prasad, “Thermoelastic stresses in SiC single crystals grown by the physical vapor transport method”, Acta Mech Sinica, vol. 22, pp.40-45, 2006.
[7] R.H. Ma, H. Zhang, V. Prasad and M. Dudley, “Growth Kinetics and Thermal Stress in the Sublimation Growth of Silicon Carbide”, Crystal Growth & Design, vol. 2, pp.213-220, 2002.
[8] I.A. Zhmakin, A.V. Kulik, S.Y. Karpov, S.E. Demina, M.S. Ramm and Y.N. Makarov, “Evolution of thermoelastic strain and dislocation density during sublimation growth of silicon carbide”, Diamond and Related Materials, vol. 9, pp.446-451, 2000.
[9] Y.G. Shi, P.Y. Dai, J.F. Yang, Z.H. Jin and H.L. Liu, “Effect of 6H-SiC crystal growth shapes on thermo-elastic stress in thegrowing crystal”, International Journal of Minerals, Metallurgy and Materials, vol. 19, pp.622-628, 2012.
[10] Y. Shi, X. Yang, D. Wang, P. Zhang, J.C. Zhang, Y. Hao and J. Yang, “Enlargement of Silicon Carbide Lely Platelet by Physical Vapor Transport Technique”, Materials and Manufacturing Processes, vol. 28, pp.1248-1252, 2013.
[11] J.M. Dedulle, M. Anikin, M. Pons, E. Blanquet, A. Pisch, R. Madar and C. Bernard, “Free growth of 4H-SiC by sublimation method”, Materials Science Forum, vol. 457-460, pp.71-74, 2004.
[12] P. Raback, “Modeling of the sublimation growth of silicon carbide crystals,” 1999.
[13] Q.S. Chen, H. Zhang, V. Prasad, C.M. Balkas and N.K. Yushin, “Modeling of heat transfer and kinetics of physical vapor transport growth of silicon carbide crystals”, Journal of Heat Transfer, vol. 123, pp.1098-1109, 2001.
[14] R.H. Ma, Q.S. Chen, H. Zhang, V. Prasad, C.M. Balkas and N.K. Yushin, “Modeling of silicon carbide crystal growth by physical vapor transport”, Journal of Crystal Growth, vol. 211, pp.352-359, 2000.
[15] M.V. Bogdanov, A.O. Galyukov, S.Y. Karpov, A.V. Kulik, S.K. Kochuguev, D.K. Ofengeim, A.V. Tsiryulnikov, M.S. Ramm, A.I. Zhmakin and Y.N. Makarov, “Virtual reactor as a new tool for modeling and optimization of SiC bulk crystal growth”, Journal of Crystal Growth, vol. 225, pp.307-311, 2001.
[16] J. Geiser, O. Klein and P. Philip, “Numerical simulation of temperature fields during the sublimation growth of SiC single crystals, using WIAS-HiTNIHS”, Journal of Crystal Growth, vol. 303, pp.352-356, 2007.
[17] M.S. Ramm, E.N. Mokhov, S.E. Demina, M.G. Ramm, A.D. Roenkov, Y.A. Vodakov, A.S. Segal, A.N. Vorob’ev, S.Y. Karpov, A.V. Kukik and Y.N. Makarov, “Optimization of sublimation growth SiC bulk crystals using modeling”, Material Science and Engineering B, vol. 61-62, pp.107-112, 1999.
[18] K. Bottcher, “Heat and mass transport computation at the sublimation growth of SiC”, Crystal Research and Technology, vol. 36, pp.719-728, 2001.
[19] S.K. Lilov, “Study of the equilibrium processes in the gas phase during silicon carbide sublimation”, Material Science and Engineering B, vol. 21, pp.65-69, 1993.
[20] S.K. Lilov, “Thermodynamic analysis of phase transformations at the dissociative evaporation of silicon carbide polytypes”, Diamond and Related Materials, vol. 4, pp. 1331-1334, 1995.
[21] Q.S. Chen, J.Y. Yan and V. Prasad, “Application of flow-kinetics model to the PVT growth of SiCcrystals”, Journal of Crystal Growth, vol. 303, pp.357-361, 2007.
[22] M. Selder, L. Kadinski, Y. Makarov, F. Durst, P. Wellmann, T. Straubinger, D. Hoffmann, S. Karpov and M. Ramm, “Global numerical simulation of heat and mass transfer for SiC bulk crystal growth by PVT”, Journal of Crystal Growth, vol. 211, pp.333-338, 2000.
[23] A.V. Kulik, M.V. Bogdanov, S.Y. Karpov, M.S. Ramm and Y.N. Makarov, “Theoretical analysis of the mass transport in the powder charge in long-term bulk SiC growth”, Material Science Forum, vol. 457-460, pp.67-70, 2004.
[24] X.J. Chen, L.J. Liu, H. Tezuka, Y. Usuki and K. Kakimoto, “Optimization of the design of a crucible for a SiC sublimation growth system using a global model”, Journal of Crystal Growth, vol. 310, pp.1810-1814, 2008.
[25] Q.S. Chen, H. Zhang, V. Prasad , C.M. Balkas, N.K. Yushin and S. Wang, “Kinetics and modeling of sublimation growth of silicon carbide bulk crystal”, Journal of Crystal Growth, vol. 224, pp.101-110, 2001.
[26] J.P. De Angeli, A.M.P. Valli, N.C. Reis and A.F. De Souza, “Finite difference simulations of the Navier-Stokes equations using parallel distributed computing”, SBAC-PAD '03 Proceedings of the 15th Symposium on Computer Architecture and High Performance Computing, pp.149-156, 2003.
[27] L. Liu and J.H. Edgar, “Transport effects in the sublimation growth of aluminum nitride”, Journal of Crystal Growth, vol. 220, pp.243-253, 2000.
[28] J. Geiser, O. Klein and P. Philip, “Influence of anisotropic thermal conductivity in the apparatus insulation for sublimation growth of SiC: numerical investigation of heat transfer”, Institute for Mathematics and Its Applications, 2005.
[29] J. Geiser and S. Irle, “Macro- and micro-simulations for a sublimation growth of SiC single crystals”, Humboldt University of Berlin, Department of Mathematics, Germany, 2008.
[30] 黃家輝,“物理氣相傳輸法生長碳化矽單晶之數值模擬系統建立及
其製程探討”,碩士論文,國立成功大學材料與工程學系,2013。
[31] J.Y. Yan, Q.S. Chen, Y.N. Jiang and H. Zhang, “Improvement of the thermal design in the SiC PVT growth process”, Journal of Crystal Growth, vol. 385, pp.34-37, 2014.