| 研究生: |
鍾佳妤 Chung, Chia-Yu |
|---|---|
| 論文名稱: |
以化學氣相沉積法成長六方氮化硼於銅箔基板 Synthesis of Hexagonal Boron Nitride film on the copper foil by Chemical Vapor Deposition |
| 指導教授: |
洪昭南
Hong, Chau-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 化學氣相沉積法 、六方氮化硼 、銅箔退火 |
| 外文關鍵詞: | CVD, hexagonal boron nitride, copper annealing |
| 相關次數: | 點閱:60 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二維奈米材料,其厚度方向僅有一或幾個原子層厚度,性能特殊且優異,在許多領域皆有著可觀的應用潛能。隨著技術已能成功地控制剝離或合成出單個或數個原子層數之石墨烯,其獨特的電子、物理、化學性能很快得帶動了二維材料的研究。其中與石墨烯結構相似之hBN也因此吸引了不少注意力,因B原子與N原子造成之極性差異,使其導熱性好同時又不導電,作為可散熱之絕緣材料,也因其二維結構與化學穩定性,使其亦可作為好的材料保護層和防擴散層。
本論文使用石英雙套管型高溫爐管系統,以硼烷胺作為前驅物、銅箔為基板,採用化學氣相沉積法沉積氮化硼膜。先於氬氣和氫氣環境下高溫退火銅箔,取得晶向排列為Cu(111)之銅箔基板,接著以氬氣或氮氣作為載流氣體,在1000℃下進行化學沉積,並於薄膜沉積完後進行1050℃之高溫退火,提高薄膜結晶度,得出拉曼位移於1369cm-1之BN薄膜。
hBN, which has a similar structure to graphene, has attracted a lot of attention. The dif-ference of polarity between B and N atoms makes it thermally conductive and electrical insulated.
In this paper, a high-temperature quartz furnace system was used, with ammonia borane as the precursor and copper foil as the substrate, and synthesized by chemical vapor deposition. The copper foil is annealed at a high temperature in an argon and hydrogen environment to obtain a crystal orientation of Cu(111). Then, using argon or nitrogen as the carrier gas,synthesize the material at 1000°C. After CVD, high temperature annealing at 1050°C was carried out to improve the crystallinity of the film, and then a BN film with a Raman shift of 1369cm-1 was obtained. The synthesized film was presumably close to amorphous aBN or semi-crystalline tBN.
[1] Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., & Smalley, R. E. C60: Buckminsterfullerene. nature, 318.6042, 162-163. (1985).
[2] Iijima, S. Synthesis of carbon nanotubes. Nature, 354.6348, 56-58. (1991).
[3] Nagashima, A., Tejima, N., Gamou, Y., Kawai, T., & Oshima, C. Electronic structure of monolayer hexagonal boron nitride phy-sisorbed on metal surfaces. Physical review letters, 75.21, 3918. (1995).
[4] Nagashima, A., Tejima, N., Gamou, Y., Kawai, T., & Oshima, C. Electronic dispersion relations of monolayer hexagonal boron nitride formed on the Ni (111) surface. Physical Review B, 51.7, 4606. (1995).
[5] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., ... & Firsov, A. A. Electric field effect in atomically thin carbon films. science, 306.5696, 666-669. (2004).
[6] Zhu, H. W., & Wang, M. Two-dimensional materials: structure, preparation and properties. J. Chin. Ceram. Soc, 45.8, 1043-1053. (2017).
[7] Zhang, K., Feng, Y., Wang, F., Yang, Z., & Wang, J. Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and appli-cations. Journal of Materials Chemistry C, 5.46, 11992-12022. (2017).
[8] Wang, L., Wu, B., Chen, J., Liu, H., Hu, P., & Liu, Y. Monolayer hexagonal boron nitride films with large domain size and clean inter-face for enhancing the mobility of graphene‐based field‐effect tran-sistors. Advanced Materials, 26.10, 1559-1564. (2014).
[9] Cobaleda, C., Pezzini, S., Diez, E., & Bellani, V. Temperature-and density-dependent transport regimes in a h-BN/bilayer gra-phene/h-BN heterostructure. Physical Review B, 89.12, 121404. (2014).
[10] Britnell, L., Gorbachev, R. V., Jalil, R., Belle, B. D., Schedin, F., Katsnelson, M. I. & Neto, A. H. C. Atomically thin boron nitride: a tunnelling barrier for graphene devices. arXiv preprint arXiv,1202.0735. (2012).
[11] Qi, Z. J., Hong, S. J., Rodríguez‐Manzo, J. A., Kybert, N. J., Gudi-bande, R., Drndić, M., ... & Johnson, A. C. Electronic transport in heterostructures of chemical vapor deposited graphene and hexagonal boron nitride. Small, 11.12, 1402-1408. (2015).
[12] Zhi, C., Bando, Y., Tang, C., Kuwahara, H., & Golberg, D. Large‐scale fabrication of boron nitride nanosheets and their utilization in poly-meric composites with improved thermal and mechanical proper-ties. Advanced Materials, 21.28, 2889-2893. (2009).
[13] Yu, J., Huang, X., Wu, C., Wu, X., Wang, G., & Jiang, P. Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer, 53.2, 471-480. (2012).
[14] Wang, X., Pakdel, A., Zhang, J., Weng, Q., Zhai, T., Zhi, C. & Bando, Y. Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric proper-ties. Nanoscale research letters, 7.1, 662. (2012).
[15] Liu, Z., Gong, Y., Zhou, W., Ma, L., Yu, J., Idrobo, J. C. & Ajayan, P. M. Ultrathin high-temperature oxidation-resistant coatings of hex-agonal boron nitride. Nature communications, 4.1, 1-8. (2013).
[16] Dong, Y., Wang, G., & Su, Q. Influence of nano-boron nitride on an-ti-aging property of waterborne fire-resistive coatings. Journal of Coatings Technology and Research, 11.5, 805-815. (2014).
[17] 田明波與劉德令編譯,薄膜科學與技術手冊,機械工業出版社,北京,第1頁,(1991)。
[18] J. Carlsson, Thin Solid Films, 130, 261.(1985).
[19] Carlsson, J. O. Processes in interfacial zones during chemical vapour deposition: aspects of kinetics, mechanisms, adhesion and substrate atom transport. Thin solid films, 130.3-4, 261-282. (1985).
[20] Jensen, K. F., Kern, W. & Vossen, J. L. Thin Film Processes II. Academic Press, Inc., San Diego, California, 284. (1991).
[21] Moroșanu, C. E. Thin films by chemical vapour deposition, Elsevier. Vol. 7. (1990).
[22] Sirtl, E., Hunt, L. P., & Sawyer, D. H. High Temperature Reactions in the Silicon‐Hydrogen‐Chlorine System. Journal of the Electrochemical Society, 121.7, 919-925. (1974).
[23] 莊達人編著,VLSI 製造技術,高立圖書有限公司,146-158,(1995)。
[24] Machaka, R. Ion Beam Modifications of Boron Nitride By Ion Im-plantation (Doctoral dissertation). (2006).
[25] Mirkarimi, P. B., McCarty, K. F., & Medlin, D. L. Review of advances in cubic boron nitride film synthesis. Materials Science and Engi-neering: R: Reports, 21.2, 47-100. (1997).
[26] Khan, M. H., Liu, H. K., Sun, X., Yamauchi, Y., Bando, Y., Golberg, D., & Huang, Z. Few-atomic-layered hexagonal boron nitride: CVD growth, characterization, and applications. Materials Today, 20.10, 611-628. (2017).
[27] Li, L. H., Cervenka, J., Watanabe, K., Taniguchi, T., & Chen, Y. Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS nano, 8.2, 1457-1462. (2014).
[28] Zhou, H., Zhu, J., Liu, Z., Yan, Z., Fan, X., Lin, J. & Tour, J. M. High thermal conductivity of suspended few-layer hexagonal boron nitride sheets. Nano Research, 7.8, 1232-1240. (2014).
[29] Kumar, R., Rajasekaran, G., & Parashar, A. Optimised cut-off func-tion for Tersoff-like potentials for a BN nanosheet: a molecular dy-namics study. Nanotechnology, 27.8, 085706. (2016).
[30] Pedersen, H., Chubarov, M., Högberg, H., Jensen, J., & Henry, A. On the effect of water and oxygen in chemical vapor deposition of boron nitride. Thin solid films, 520.18, 5889-5893. (2012).
[31] Zhao, Z., Yang, Z., Wen, Y., & Wang, Y. Facile synthesis and charac-terization of hexagonal boron nitride nanoplates by two‐step route. Journal of the American Ceramic Society, 94.12, 4496-4501. (2011).
[32] Alkoy, S., Toy, C., Gönül, T., & Tekin, A. Crystallization behavior and characterization of turbostratic boron nitride. Journal of the Eu-ropean Ceramic Society, 17.12, 1415-1422. (1997).
[33] Balmain, W. H. Bemerkungen über die Bildung von Verbindungen des Bors und Siliciums mit Stickstoff und gewissen Metallen. Journal für Praktische Chemie, 27.1, 422-430. (1842).
[34] Lipp, A., Schwetz, K. A., & Hunold, K. Hexagonal boron nitride: fabrication, properties and applications. Journal of the European Ceramic Society, 5.1, 3-9. (1989).
[35] Nagashima, A. Y. A. T. O., Tejima, N., Gamou, Y., Kawai, T., & Oshima, C. Electronic dispersion relations of monolayer hexagonal boron nitride formed on the Ni (111) surface. Physical Review B, 51.7, 4606. (1995).
[36] Rand, M. J., & Roberts, J. F. Preparation and properties of thin film boron nitride. Journal of the Electrochemical Society, 115.4, 423. (1968).
[37] Takahashi, T., Itoh, H., & Takeuchi, A. Chemical vapor deposition of hexagonal boron nitride thick film on iron. Journal of Crystal Growth, 47.2, 245-250. (1979).
[38] Sano, M., & Aoki, M. Chemical vapour deposition of thin films of BN onto fused silica and sapphire. Thin Solid Films, 83.2, 247-251. (1981).
[39] Arya, S. P. S., & D'amico, A. Preparation, properties and applications of boron nitride thin films. Thin Solid Films, 157.2, 267-282. (1988).
[40] Paine, R. T., & Narula, C. K. Synthetic routes to boron ni-tride. Chemical Reviews, 90.1, 73-91. (1990).
[41] Phani, A. R. Thin films of boron nitride grown by CVD. Bulletin of Materials Science, 17.3, 219-224. (1994).
[42] Bresnehan, M. S., Hollander, M. J., Wetherington, M., LaBella, M., Trumbull, K. A., Cavalero, R. & Robinson, J. A. Integration of hex-agonal boron nitride with quasi-freestanding epitaxial graphene: to-ward wafer-scale, high-performance devices. ACS nano, 6.6, 5234-5241. (2012).
[43] Lee, K. H., Shin, H. J., Lee, J., Lee, I. Y., Kim, G. H., Choi, J. Y., & Kim, S. W. Large-scale synthesis of high-quality hexagonal boron ni-tride nanosheets for large-area graphene electronics. Nano let-ters, 12.2, 714-718. (2012).
[44] Tay, R. Y., Griep, M. H., Mallick, G., Tsang, S. H., Singh, R. S., Tumlin, T. & Karna, S. P. Growth of large single-crystalline two-dimensional boron nitride hexagons on electropolished cop-per. Nano letters, 14.2, 839-846. (2014).
[45] Song, L., Ci, L., Lu, H., Sorokin, P. B., Jin, C., Ni, J. & Ajayan, P. M. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano letters, 10.8, 3209-3215. (2010).
[46] Khan, M. H., Huang, Z., Xiao, F., Casillas, G., Chen, Z., Molino, P. J., & Liu, H. K. Synthesis of large and few atomic layers of hexagonal boron nitride on melted copper. Scientific reports, 5.1, 1-11. (2015).
[47] Stehle, Y., Meyer III, H. M., Unocic, R. R., Kidder, M., Polizos, G., Datskos, P. G.& Vlassiouk, I. V. Synthesis of hexagonal boron nitride monolayer: control of nucleation and crystal morphology. Chemistry of Materials, 27.23, 8041-8047. (2015).
[48] Kim, K. K., Hsu, A., Jia, X., Kim, S. M., Shi, Y., Hofmann, M. & Kong, J. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano letters, 12.1, 161-166. (2012).
[49] Gao, Y., Ren, W., Ma, T., Liu, Z., Zhang, Y., Liu, W. B.& Cheng, H. M. Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils. ACS nano, 7.6, 5199-5206. (2013).
[50] Kim, G., Jang, A. R., Jeong, H. Y., Lee, Z., Kang, D. J., & Shin, H. S.. Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil. Nano letters, 13.4, 1834-1839. (2013)
[51] Guo, N., Wei, J., Fan, L., Jia, Y., Liang, D., Zhu, H. & Wu, D. Con-trollable growth of triangular hexagonal boron nitride domains on copper foils by an improved low-pressure chemical vapor deposition method. Nanotechnology, 23.41, 415605. (2012).
[52] Han, J., Lee, J. Y., Kwon, H., & Yeo, J. S. Synthesis of wafer-scale hexagonal boron nitride monolayers free of aminoborane nanoparti-cles by chemical vapor deposition. Nanotechnology, 25.14, 145604. (2014).
[53] Jang, A. R., Hong, S., Hyun, C., Yoon, S. I., Kim, G., Jeong, H. Y. & Park, N. Wafer-scale and wrinkle-free epitaxial growth of sin-gle-orientated multilayer hexagonal boron nitride on sapphire. Nano letters, 16.5, 3360-3366. (2016).
[54] Sharma, S., Kalita, G., Vishwakarma, R., Zulkifli, Z., & Tanemura, M. Opening of triangular hole in triangular-shaped chemical vapor de-posited hexagonal boron nitride crystal. Scientific reports, 5, 10426. (2015).
[55] Tay, R. Y., Park, H. J., Ryu, G. H., Tan, D., Tsang, S. H., Li, H., ... & Ruoff, R. S. Synthesis of aligned symmetrical multifaceted monolayer hexagonal boron nitride single crystals on resolidified cop-per. Nanoscale, 8.4, 2434-2444. (2016).
[56] Sutter, P., Lahiri, J., Albrecht, P., & Sutter, E. Chemical vapor depo-sition and etching of high-quality monolayer hexagonal boron nitride films. ACS nano, 5.9, 7303-7309. (2011).
[57] Park, J. H., Park, J. C., Yun, S. J., Kim, H., Luong, D. H., Kim, S. M., ... & Lee, Y. H. Large-area monolayer hexagonal boron nitride on Pt foil. Acs Nano, 8.8, 8520-8528. (2014).
[58] Caneva, S., Weatherup, R. S., Bayer, B. C., Brennan, B., Spencer, S. J., Mingard, K. & Hofmann, S. Nucleation control for large, single crystalline domains of monolayer hexagonal boron nitride via Si-doped Fe catalysts. Nano letters, 15.3, 1867-1875. (2015).
[59] Shi, Y., Hamsen, C., Jia, X., Kim, K. K., Reina, A., Hofmann, M. & Dresselhaus, M. S. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano letters, 10.10, 4134-4139. (2010).
[60] Kidambi, P. R., Blume, R., Kling, J., Wagner, J. B., Baehtz, C., Weatherup, R. S., ... & Hofmann, S. In situ observations during chemical vapor deposition of hexagonal boron nitride on polycrys-talline copper. Chemistry of Materials, 26.22, 6380-6392. (2014).
[61] Müller, F., Stöwe, K., & Sachdev, H. Symmetry versus commensura-bility: epitaxial growth of hexagonal boron nitride on Pt (111) from B-trichloroborazine (ClBNH)3. Chemistry of materials, 17.13, 3464-3467. (2005).
[62] Tay, R. Y., Li, H., Tsang, S. H., Zhu, M., Loeblein, M., Jing, L.& Teo, E. H. T. Trimethylamine borane: a new single-source precursor for monolayer h-BN single crystals and h-BCN thin films. Chemistry of Materials, 28.7, 2180-2190. (2016).
[63] Ismach, A., Chou, H., Ferrer, D. A., Wu, Y., McDonnell, S., Floresca, H. C.& Wallace, R. M. Toward the controlled synthesis of hexagonal boron nitride films. ACS nano, 6.7, 6378-6385. (2012).
[64] Gomez-Aleixandre, C., Diaz, D., Orgaz, F., & Albella, J. M. Reaction of diborane and ammonia gas mixtures in a chemical vapor deposition hot-wall reactor. The Journal of Physical Chemistry, 97.42, 11043-11046. (1993).
[65] Chatterjee, S., Luo, Z., Acerce, M., Yates, D. M., Johnson, A. C., & Sneddon, L. G.. Chemical vapor deposition of boron nitride nanosheets on metallic substrates via decaborane/ammonia reac-tions. Chemistry of materials, 23.20, 4414-4416. (2011)
[66] Wang, X., Hooper, T. N., Kumar, A., Priest, I. K., Sheng, Y., Samuels, T. O. & Weller, A. S.. Oligomeric aminoborane precursors for the chemical vapour deposition growth of few-layer hexagonal boron ni-tride. CrystEngComm, 19.2, 285-294. (2017)
[67] Zhang, C., Hao, X., Wu, Y., & Du, M. Synthesis of vertically aligned boron nitride nanosheets using CVD method. Materials Research Bulletin, 47.9, 2277-2281. (2012).
[68] Qin, L., Yu, J., Li, M., Liu, F., & Bai, X. Catalyst-free growth of mono-and few-atomic-layer boron nitride sheets by chemical vapor deposition. Nanotechnology, 22.21, 215602. (2011).
[69] Yu, J., Qin, L., Hao, Y., Kuang, S., Bai, X., Chong, Y. M. & Wang, E. Vertically aligned boron nitride nanosheets: chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity. ACS nano, 4.1, 414-422. (2010).
[70] Müller, F., Hüfner, S., Sachdev, H., Laskowski, R., Blaha, P., & Schwarz, K. Epitaxial growth of hexagonal boron nitride on Ag (111). Physical Review B, 82.11, 113406. (2010).
[71] Li, J., Bernard, S., Salles, V., Gervais, C., & Miele, P. Preparation of polyborazylene-derived bulk boron nitride with tunable properties by warm-pressing and pressureless pyrolysis. Chemistry of Materi-als, 22.6, 2010-2019. (2010).
[72] Demirci, U. B.. Ammonia borane, a material with exceptional prop-erties for chemical hydrogen storage. International Journal of hydro-gen energy, 42.15, 9978-10013. (2017)
[73] Wood, G. E., Marsden, A. J., Mudd, J. J., Walker, M., Asensio, M., Avila, J. & Wilson, N. R. van der Waals epitaxy of monolayer hex-agonal boron nitride on copper foil: growth, crystallography and electronic band structure. 2D Materials, 2.2, 025003. (2015).
[74] Kim, K. K., Hsu, A., Jia, X., Kim, S. M., Shi, Y., Dresselhaus, M.& Kong, J. Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS nano, 6.10, 8583-8590. (2012).
[75] Massalski, T. B. Binary alloy phase diagrams. ASM international, 3, 2874. (1992).
[76] Venables, J. Introduction to surface and thin film processes. Cam-bridge University Press. (2000).
[77] Wen, Y. N., & Zhang, J. M. Surface energy calculation of the fcc metals by using the MAEAM. Solid State Communications, 144.3-4, 163-167. (2007).
校內:2025-08-11公開