簡易檢索 / 詳目顯示

研究生: 吳峯宇
Wu, Feng-Yu
論文名稱: 利用氣衝式噴嘴進行甲醇重組之啟動及穩態反應分析
Analyses of the Start-up and Steady Reactions of Methanol Reforming Employing an Air-blast Atomizer
指導教授: 江滄柳
Jiang, Tsung-Leo
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 87
中文關鍵詞: 噴霧冷機啟動甲醇重組反應
外文關鍵詞: Spray, Cold Boot, Methanol, Reforming Reaction
相關次數: 點閱:70下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以數值模擬分析一自熱式甲醇噴霧重組器的啟動速率,與穩態反應的甲醇轉化率與產氫量。所使用的觸媒為Pt/CeO2-ZrO2。甲醇噴霧重組器的「冷機啟動」設定程序為:利用火星塞點燃甲醇,提供熱量使觸媒加熱;再關閉火星塞進行重組反應至穩定狀態。經模擬分析結果,利用霧化器的甲醇重組器冷機啟動時間可有效的縮短至2分鐘內完成。而在穩態的反應分析下,提高空氣入口的溫度,甲醇轉化率雖然不變,然而產氫量卻會小幅的下降。經模擬結果證實,使用噴霧進入反應器,相較於使用氣態進入,噴霧對於冷機啟動上有相當大的時間優勢。並發現了利用點火器燃燒甲醇對於加熱觸媒的可行性,此方法對於重組器減少能量損耗上有突破性的幫助。

    The start-up process, methanol conversion and hydrogen production of the auto-thermal reformer (ATR) have been investigated by numerical simulation in the present study. The employed catalyst is Pt/CeO2-ZrO2. For the start-up process of the investigated ATR, the sparking plug is employed to ignite methanol, providing thermal energy and heating up the catalyst. As the catalyst meets the self-sustained condition, the sparking plug is shut down and the reforming reaction proceeds to the stable condition. The simulation results show that the start-up process of ATR takes less than 2 minutes when the methanol atomizer is employed. Under steady operation, increasing the air-inlet temperature has no effect on the conversion rate while it slightly reduces the hydrogen production. The results of simulation indicate that employing the atomizer leads to shorter start-up time than that of the case by gaseous feeding. The feasibility of heating the catalyst by spark ignition has been observed. The technique of spark ignition has significant benefit on the reduction of energy loss for the start-up process of the methanol reformer.

    目錄 摘要.....................................................................................................i Abstract .............................................................................................ii 誌謝.................................................................................................. iii 目錄...................................................................................................iv 表目錄..............................................................................................vii 圖目錄............................................................................................ viii 符號說明............................................................................................x 第一章 導論....................................................................................1 §1-1 前言................................................................................................... 1 §1-2 重組材料分析評估............................................................................ 2 §1-3 甲醇不同的重組方式........................................................................ 3 第二章 文獻回顧............................................................................6 §2-1 文獻回顧........................................................................................... 6 §2-2 研究動機與目的.............................................................................14 §2-3 本文架構.........................................................................................15 第三章 研究方法..........................................................................16 §3-1 物理問題與模式說明.....................................................................16 §3-2 模型問題的基本假設.....................................................................17 §3-3 統御方程式......................................................................................17 §3-3-1 非多孔流域區之統御方程式......................................................17 §3-3-2 多孔流域區之統御方程式..........................................................19 §3-4 噴霧計算理論..................................................................................21 §3-4-1 噴霧的力平衡計算......................................................................21 §3-4-2 噴霧的顆粒粒徑計算..................................................................21 §3-4-3 噴霧液滴的蒸發計算..................................................................22 §3-5 化學反應機構..................................................................................23 §3-5-1 成份傳輸方程式..........................................................................23 §3-5-2 化學反應速率..............................................................................24 §3-6 數值方法..........................................................................................26 §3-6-1 雷諾傳輸定理(Reynolds Transport Theorem).............................26 §3-6-2 PISO 演算法.................................................................................27 §3-6-3 鬆弛係數......................................................................................30 §3-6-4 收斂標準.....................................................................................30 第四章 結果與討論....................................................................31 §4-1 噴霧粒徑的比對與蒸發模式的驗證............................................32 §4-2 甲醇燃燒模組驗證.........................................................................38 §4-3 重組器網格獨立測試.....................................................................41 §4-4 甲醇重組器初步啟動分析.............................................................43 §4-5 冷啟動不同階段探討.....................................................................51 §4-6 重組器穩態反應分析.....................................................................63 §4-7 燃料以蒸氣進入的冷機啟動與噴霧的冷機啟動比較................68 第五章 結論與未來工作..............................................................74 參考文獻..........................................................................................78 自述..................................................................................................86 著作權聲明......................................................................................87

    【1】 宋隆裕,“燃料電池用甲醇重組器之測試研究”,能源季刊,第二十四卷,第一期,pp.69-88,1993。
    【2】 Hohlein, B., Boe, M., Bogild-Hansen, J., Brockerhoff, P., Colsman, G., and Emonts, B., “Hydrogen from methanol for fuel cells in mobile systems: development of a compact reformer,” Jouranl of Power Sources, Vol. 61, pp.143-147, 1996.
    【3】 Wiese, W., Emonts, B., and Peters, R., “Methanol steam reforming in a fuel cell drive system,” Journal of Power Sources, Vol. 84, pp.187-193, 1999.
    【4】 Han, J., S., Kim, I., S., and Choi, K., S., “Purifier-integrate methanol reformer for fuel cell vehicles,” Journal of Power Sources, Vol. 86, pp. 223-227, 2000.
    【5】 Liu, N., Yuan, Z., Wang, C., Pan, L., Wang, S., Li, S., Li, D., and Wang, S., “Bench-scale methanol autothermal reformer for distributed hydrogen production,” Chemical Engineering Journal, Vol. 139, pp. 56-62, 2008.
    【6】 Wang, S., and Wang, S., “Thermodynamic equilibrium composition analysis of methanol autothermal reforming for PEMFC based on FLUENT Software,” Journal of Power Sources, Vol. 185, pp. 451-458, 2008.
    【7】 Horng, R. F., Chen, C. R., Wu, T. S., and Chan, C. H., “Cold start response of a small methanol reformer by partial oxidation reforming of hydrogen for fuel cell,” Applied Thermal Engineering, Vol. 26, pp. 1115-1124, 2006.
    【8】 Choi, K. S., Kim, H. M., and Yoon, H. C., “Equilibrium model validation through the experiments of methanol autothermal reformation,” International Journal of Hydrogen Energy, Vol. 33, pp. 7039-7047, 2008.
    【9】 Fu, C. H., and Wu, J. C. S., “Mathematical simulation of hydrogen production via methanol steam reforming using double-jacketed membrane reactor,” International Journal of Hydrogen Energy, Vol. 32, pp. 4830-4839, 2007.
    【10】 Suh, J., Lee, M., Greif, R., and Grigoropoulos, C. P., “A study of steam methanol reforming in a microreactor,” Journal of Power Sources, Vol. 173, pp. 458-466, 2007.
    【11】 Sattereld, C. N., “Heterogeneous catalysis in industrial practice,” New York, McGraw-Hill Inc., 1991
    【12】 Papavasiliou, J., Kim, I. S., and Choi, K. S., “Purifier-integrated methanol reformer for fuel cell vehicles,” Journal of Power Sources, Vol. 86, pp.187-193, 1999.
    【13】 Yong, S. T., Hidajat, K., and Kawi, S., “Reaction study of auto thermal steam reforming of methanol to hydrogen using a novel nano CuZnAl-catalyst,” Journal of Power Sources, Vol. 131, pp.91-95, 2004.
    【14】 Steven, P., Bohdan, W., Brant, A., and Peppley, J. C., “Kinetic studies using temperature-scanning: the steam-reforming of methanol,” Applied Catalyst A: General, Vol. 179, pp.51-70, 1999.
    【15】 Brant, A., and Peppley, J. C., “Methanol-steam reforming on Cu/ZnO/Al2O3: Part 1:the reaction network,” Applied Catalyst A:General , Vol.179, pp.21-29, 1999.
    【16】 Brant A., and Peppley, J. C., “Methanol-steam reforming on Cu/ZnO/Al2O3 catalyst: Part 2 A comprehensive kinetic model,” Applied Catalyst A: General, Vol. 179, pp. 31-49, 1999.
    【17】 Specchia, S., Galletti, C., Fiorot, S., Saracco, G., and Specchia, V., “CO preferential oxidation over Rh-supported catalyst in H2-rich gas for fuel cell applications,” Fuel Cell Seminar, Vol. 5, pp.677-685, 2006.
    【18】 Lee, S., Ahmed, S., and Ahluwalia, R., “Steam reforming of ethanol at elevated pressure for hydrogen production,” Fuel Cell Seminar, 2006.
    【19】 Moon, D., Ryu, J., Choi, E., Lee, Y., Yoo, K., and Lee, S., “Studies on the development of high performance WGS catalyst for fuel processor applications,” Fuel Cell Seminar, 2006.
    【20】 Pino, L., Vita, A., Cipitì, F., Laganà, M., and Recupero, V., “Comparative analysis of catalysts for co preferential oxidation,” Fuel Cell Seminar, 2006.
    【21】 Fukahori, S., Kitaoka, T., Tomoda, A., Suzuki, R., and Wariishi, H., “Methanol steam reforming over paper-like composites of Cu/ZnO catalyst and ceramic fiber,” Applied Catalysis A: General, Vol. 300, pp. 155–161, 2006.
    【22】 Koga, H., Fukahori, S., Kitaoka, T., Tomoda, A., Suzuki, R., and Wariishi, H., “Autothermal reforming of methanol using paper-like Cu/ZnO catalyst composites prepared by a papermaking technique,” Applied Catalysis A: General, Vol. 309, pp263–269, 2006.
    【23】 Fukahori, S., Koga, H., Kitaoka, T., Tomoda, A., Suzuki, R., and Wariishi, H., “Hydrogen production from methanol using a SiC fibercontaining paper composite impregnated with Cu/ZnO catalyst,” Applied Catalysis A: General, Vol. 310, pp. 138–144, 2006.
    【24】 Koga, H., Fukahori, S., Kitaoka, T., Mitsuyoshi, N., and Wariishi, H., “Paper-structured catalyst with porous fiber-network microstructure for autothermal hydrogen production,” Chemical Engineering Journal, Vol. 139, pp. 408-415, 2008.
    【25】 Fukahori, S., Koga, H., Kitaoka, T., Nakamura, M., and Wariishi, H., “Steam reforming behavior of methanol using paper-structured catalysts: Experimental and computational fluid dynamic analysis,” Journal of Hydrogen Energy, Vol. 33, pp. 1661-1670, 2008.
    【26】 Dupont, N., Germani, G., Veen, A. C. V., Schuurman, Y., Schafer, G.., and Mirodatos, C., “Specificities of micro-structured reactors for hydrogen production andpurification,” International Journal of Hydrogen Energy, Vol. 32, pp. 1443–1449, 2007.
    【27】 Lin, Y. C., Hohn, K. L., and Stagg-Williams, S. M., “Hydrogen generation from methanol oxidation on supported Cu and Pt catalysts: Effects of active phases and supports,” Applied Catalysis A: General, Vol. 327, pp. 164–172, 2007.
    【28】 Hong, X., and Ren, S., “Selective hydrogen production from methanol oxidative steam reforming over Zn–Cr catalysts with or without Cu loading,” International Journal of Hydrogen Energy, Vol. 33, pp. 700-708, 2008.
    【29】 Kurr, P., Kasatkin, I., Girgsdies, F., Trunschke, A., Schlogl, R., and Ressler, T., “Microstructural characterization of Cu/ZnO/Al2O3 catalysts for methanol steam reforming – a comparative study,” Applied Catalysis A: General, Vol. 348, pp. 153-164, 2008.
    【30】 Chuang, C. C., Chen, Y. H., Ward, J. D., Yu, C. C., Liu, Y.C., and Lee, C. H., “Optimal design of an experimental methanol fuel reformer,” International Journal of Hydrogen Eneragy, Vol. 33, pp. 7062-7073, 2008.
    【31】 Asprey, S. P., Wojciechowski, B. W., and Pepply, B. A., “Kinetic studies using temperature scanning: the steam-reforming of methanol,” Applied Catalysis A: General, Vol. 179, pp. 51–70, 1999.
    【32】 Pepply, B. A., Amphlett, J. C., Kearns, L. M., and Mann, R. F., “Methanol–steam reforming on Cu/ZnO/Al2O3. Part 1: The reaction network,” Applied Catalysis A: General, Vol. 179, pp. 21–29, 1999.
    【33】 Pepply, B. A., Amphlett, J. C., Kearns, L. M., and Mann, R. F., “Methanol–steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model,” Applied Catalysis A: General, Vol. 179, pp. 31–49, 1999.
    【34】 Lattner, J. R., and Harold, M. P., “Compariosn of methanol-based fuel processors for PEM fuel cell systems,” Applied Catalysis B Environ, Vol. 56, pp. 149–169, 2005.
    【35】 Choi, Y., and Stenger, H. G., “Water gas shift reaction kinetics and reactor modeling for fuel cell grade hydrogen,” Journal of Power Sources, Vol. 124, pp.432–439,2003.
    【36】 Venderbosch, R. H., and Prins, W., “Platinum catalyzed oxidation of carbon monoxide as a model reaction in mass transfer measurements,” Chemical Engineering Science, Vol. 53, pp.3355–3366, 1998.
    【37】 Choi, Y., and Stenger, H. G., “Kinetics, simulation and insights for CO selective oxidation in fuel cell applications,” Journal of Power Sources, Vol. 129, pp. 246–254, 2004.
    【38】 Stamps, A. T., and Gatzke, E. P., “Dynamic modeling of a methanol reformer—PEMFC stack system for analysis and design,” Journal of Power Sources, Vol. 161, pp. 356-370, 2006.
    【39】 Kawamura, Y., Ogura, N., Yamamoto, T., and Igarashi, A., “A miniaturized methanol reformer with Si-based microreactor for a small PEMFC,” Chemical Engineering Science, Vol. 61, pp. 1092-1101, 2006.
    【40】 Nilsson, M., Karatzas, X., Lindstrom, B., and Pettersson, L. J., “Assessing the adaptability to varying fuel supply of an autothermal reformer,” Chemical Engineering Journal, Vol. 142, pp. 309–317, 2008.
    【41】 FLUENT 6.3 User's Guide, 2006.
    【42】 Issa, R. I., “Solution of Implicitly Discretized Fluid Flow Equations by Operator Splitting,” Journal of Computational Physics, Vol. 62, pp. 40-65, 1986.
    【43】 邱韋丞,謝旭峰,洪榮芳,周煥銘,“瓩級燃料電池甲醇自發熱重組器系統開發及其冷啟動暫態模式切換之特性研究”,中華民國燃燒學會第二十屆學術研討會論文集,A-047,2010。
    【44】 Metghalchi, M., and Keck, J. C., “Burning velocities of mixtures of air with methanol, isooctane and indolene at high pressures and temperatures,” Combustion and Flame, Vol. 48, pp. 191-210, 1982.

    下載圖示 校內:2013-08-16公開
    校外:2013-08-16公開
    QR CODE