簡易檢索 / 詳目顯示

研究生: 蔡侑達
Tsai, Yu-Ta
論文名稱: 以數學規劃法建構直覺式模糊迴歸模型
Formulating Intuitionistic Fuzzy Regression Models By Mathematical Programming Methods
指導教授: 陳梁軒
Chen, Liang-Hsuan
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 55
中文關鍵詞: 直覺式模糊數直覺模糊迴歸數學規劃法
外文關鍵詞: Intuitionistic fuzzy number, Intuitionistic fuzzy regression, Mathematical programming methods
相關次數: 點閱:112下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 迴歸分析(regression analysis)為統計上最常使用的決策分析工具之一,能使決策者知曉投入因子與產出因子的關聯性,針對迴歸分析,過往研究所蒐集與探討的資料都是明確值(crisp value),然而現實生活中,許多獲得的資料並不是精確的,只能表示個大概,又或是本身為語意,充滿個人主觀態度,為處理這類資料,學者提出了模糊集合理論(fuzzy set theory),將不確定性表達於資料型態上。為了使不確定性資訊的表達更為符合本質上的不確定,學者由模糊集合理論衍生出直覺式模糊集合(intuitionistic fuzzy set)的概念,不再只考慮正向資訊,更加入了負向資訊進行探討,使表達更為完善。
    過往的文獻中,鮮少對於直覺式模糊迴歸模型進行探討者,其迴歸的估計式與求解手法的訂定將決定整體研究的走向。本研究採用係數為明確值、投入產出變數為直覺式模糊數的迴歸估計式,原因乃在於係數為明確值而非直覺式模糊數可避免兩直覺式模糊數相乘而導致的直覺式模糊數之展幅(spread)過份放大,展幅所代表的是模糊性,也免去使用模糊化或解模糊化而造程資訊的流失;而求解手法則使用數學規劃法,期望能有不同於傳統最小平方法的求解過程。
    在建模過程中,利用分解定理與直覺式模糊截集(cut)來建立數學規劃模型與迴歸估計式,並提出兩種不同的建構方法,最後用舊有的相似度與新提出的距離差異度來檢驗模型的合適性與優劣性。最後本研究以實際數據成功建構出係數為明確值的直覺式模糊迴歸,其表現不亞於舊有文獻所建構之模型。

    Regression analysis is one of the most widely used decision making tools. It allows decision makers to determine the relationship between input variables and output variables. In a statistical regression analysis, data is always precise figures, which are called crisp values. However, in the complex real-world environment, data may be uncertain, written in linguistic terms, or based on personal subjective attitudes. Therefore, fuzzy set theory was developed to deal with these data. In order to express the essence of uncertainty better, scholars proposed the concept of intuitionistic fuzzy sets (IFS) as a generalization of the fuzzy set theory. In addition to including positive information, it also includes negative information.
    There have been few studies of intuitionistic fuzzy regression (IFR) models. The direction of these studies was decided by three elements: data-type and parameter-type, solution approaches, and computation of the estimation error. In this study, the available data for both input variables and output variables are assumed to be intuitionistic fuzzy numbers (IFN), and the model parameters are crisp numbers. The parameters are crisp values rather than IFN because IFN multiplied with each other will bring about an over-increase in the spread of the IFN. In other words, the fuzziness of numbers will be over-increased. Different from the traditional solution methods such as the least-squares method, this study uses mathematical programming methods. The concept of decomposition rules and IFN-cuts are also used to build models. Two different approaches are proposed in this study. The predictive ability of the obtained models is evaluated by using similarity and distance measures. The results indicate that the models proposed in this study are better than their counterparts.

    摘要 I Abstract II 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 X 第一章 緒論    1 第一節 研究背景與動機 1 第二節 研究目的 2 第三節 研究流程 3 第四節 論文架構 4 第二章 文獻探討 5 第一節 直覺式模糊理論 5 一、直覺式模糊集合 5 二、直覺式模糊距離測度 7 三、直覺式模糊數 8 四、直覺式模糊數運算 10 第二節 模糊迴歸與直覺式模糊迴歸 12 一、資料型態 13 二、數學規劃法 14 三、最小平方法 15 四、兩階段法 16 五、直覺式模糊迴歸17 第三節 迴歸誤差式18 一、Kim and Bishu衡量指標 19 二、Hojati衡量指標 20 三、距離測度 21 第四節 本章小結 22 第三章 模式建構 24 第一節 研究構想 24 一、問題描述 24 二、研究假設 25 三、模型建構流程 25 第二節 模型建構 27 一、符號定義 27 二、建構流程 28 第三節 本章小結 35 第四章 模型應用與分析 36 第一節 範例演練 36 第二節 數據分析 39 一、展幅之探討 39 二、截集數量之探討40 三、離群值之影響 42 四、模型差異與選擇43 第三節 本章小結 45 第五章 結論與未來研究方向 46 第一節 研究結論 46 第二節 未來方向 47 參考文獻 48 附錄 51

    Arefi, M., & Taheri, S. M. (2015). Least-Squares Regression Based on Atanassov's Intuitionistic Fuzzy Inputs–Outputs and Atanassov's Intuitionistic Fuzzy Parameters. IEEE Transactions on Fuzzy Systems, 23(4), 1142-1154.
    Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96.
    Atanassov, K. T. (1989). More on intuitionistic fuzzy sets. Fuzzy Sets and Systems, 33(1), 37-45.
    Burillo, P., & Bustince, H. (1996). Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets and Systems, 78(3), 305-316.
    Burillo, P., Bustince, H., & Mohedano, V. (1994, September). Some definitions of intuitionistic fuzzy number. First properties. In Proceedings of the 1st Workshop on Fuzzy Based Expert Systems (pp. 53-55).
    Chen, L. H., & Hsueh, C. C. (2007). A mathematical programming method for formulating a fuzzy regression model based on distance criterion. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 37(3), 705-712.
    Chen, L. H., & Hsueh, C. C. (2009). Fuzzy regression models using the least-squares method based on the concept of distance. IEEE Transactions on Fuzzy Systems, 17(6), 1259-1272.
    Chen, L. H., Hsueh, C. C., & Chang, C. J. (2013). A two-stage approach for formulating fuzzy regression models. Knowledge-Based Systems, 52, 302-310.
    Chen, L. H., & Lu, H. W. (2001). An approximate approach for ranking fuzzy numbers based on left and right dominance. Computers & Mathematics with Applications, 41(12), 1589-1602.
    Diamond, P. (1988). Fuzzy least squares. Information Sciences, 46(3), 141-157.
    Hojati, M., Bector, C. R., & Smimou, K. (2005). A simple method for computation of fuzzy linear regression. European Journal of Operational Research, 166(1), 172-184.
    Kao, C., & Chyu, C. L. (2002). A fuzzy linear regression model with better explanatory power. Fuzzy Sets and Systems, 126(3), 401-409.
    Kim, B., & Bishu, R. R. (1998). Evaluation of fuzzy linear regression models by comparing membership functions. Fuzzy Sets and Systems, 100(1), 343-352.
    Mahapatra, G. S., & Roy, T. K. (2009). Reliability evaluation using triangular intuitionistic fuzzy numbers arithmetic operations. World Academy of Science, Engineering and Technology, 3(2), 350-357.
    Ming, M., Friedman, M., & Kandel, A. (1997). General fuzzy least squares. Fuzzy Sets and Systems, 88(1), 107-118.
    Mohammadi, J., & Taheri, S. (2004). Pedomodels fitting with fuzzy least squares regression. Iranian Journal of Fuzzy Systems, 1(2), 45-61.
    Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wasserman, W. (1996). Applied Linear Statistical Models, 4, p. 318. Chicago: Irwin.
    Parvathi, R., Malathi, C., Akram, M., & Atanassov, K. T. (2013). Intuitionistic fuzzy linear regression analysis. Fuzzy Optimization and Decision Making, 12(2), 215-229.
    Sakawa, M., & Yano, H. (1992). Multiobjective fuzzy linear regression analysis for fuzzy input-output data. Fuzzy Sets and Systems, 47(2), 173-181.
    Savic, D. A., & Pedrycz, W. (1991). Evaluation of fuzzy linear regression models. Fuzzy Sets and Systems, 39(1), 51-63.
    Szmidt, E., & Kacprzyk, J. (2000). Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems, 114(3), 505-518.
    Tanaka, H. (1987). Fuzzy data analysis by possibilistic linear models. Fuzzy Sets and Systems, 24(3), 363-375.
    Tanaka, H., Hayashi, I., & Watada, J. (1989). Possibilistic linear regression analysis for fuzzy data. European Journal of Operational Research, 40(3), 389-396.
    Tanaka, H., Uegima, S., & Asai, K. (1982). Linear regression analysis with fuzzy model. IEEE Transactions on Systems, Man, Cybernetics, 12(6), 903-907.
    Tanaka, H., & Watada, J. (1988). Possibilistic linear systems and their application to the linear regression model. Fuzzy Sets and Systems, 27(3), 275-289.
    Wu, B., & Tseng, N. F. (2002). A new approach to fuzzy regression models with application to business cycle analysis. Fuzzy Sets and Systems, 130(1), 33-42.
    Xu, R. (1991). A linear regression model in fuzzy environment. Advance in Modelling Simulation, 27(2), 31-40
    Yang, M. S., & Lin, T. S. (2002). Fuzzy least-squares linear regression analysis for fuzzy input–output data. Fuzzy Sets and Systems, 126(3), 389-399.
    Yen, K. K., Ghoshray, S., & Roig, G. (1999). A linear regression model using triangular fuzzy number coefficients. Fuzzy Sets and Systems, 106(2), 167-177.
    Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.

    下載圖示 校內:2020-07-01公開
    校外:2020-07-01公開
    QR CODE