簡易檢索 / 詳目顯示

研究生: 蔡孟暄
Tsai, Meng-Hsuan
論文名稱: EB病毒溶裂期蛋白質Rta誘發衰老相關細胞激素的表現
Induction of senescence-associated cytokines by EBV lytic transactivator Rta
指導教授: 張堯
Chang, Yao
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 53
中文關鍵詞: EB病毒Rta衰老相關分泌蛋白甲型雌性激素受體
外文關鍵詞: EBV, Rta, SASP, ERα
相關次數: 點閱:119下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • EB病毒的溶裂期蛋白質在EB病毒相關疾病的發展中扮演某些角色。例如病毒的溶裂期轉活化蛋白質Zta會正向調控發炎相關細胞激素的表現。已知另一個溶裂期轉活化蛋白質Rta可以調控許多病毒溶裂期基因的表現,但它對於宿主細胞基因的調控則較少被探討。特別的是,已有研究指出Rta可以誘發細胞衰老,而細胞衰老通常會伴隨著分泌多種免疫調節性的細胞激素,這種現象稱為衰老相關分泌表型 (SASP)。因此我們想知道Rta是否可以誘發SASP相關細胞激素的表現。在本研究中,我們發現Rta會誘發至少四種SASP相關細胞激素,包括介白素-6 (IL-6)、巨噬細胞集落刺激因子 (GM-CSF)、以及巨噬細胞發炎蛋白質-1α/β (MIP-1α/β)。在沒有EB病毒感染的鼻咽癌上皮細胞中,Rta可以誘發這四種細胞激素RNA及蛋白質的表現,同時也會活化它們基因啟動子的活性。Rta誘發這四種細胞激素的表現都需要Rta的 C端區域,然而Rta可以不需要入核訊號便能誘發IL-6的表現。此外,我們也發現Rta可以活化p38 MAPK並藉此增加甲型雌性激素受體 (ERα) 的表現。抑制劑實驗結果顯示Rta誘發IL-6的表現需要p38 MAPK及ERα。Rta誘發MIP-1α/β的表現需要MAPK、ERα及E2F等多種訊息路徑,但這些路徑卻不參與Rta誘發GM-CSF的表現。總結而論,我們發現Rta可以經由多種機制誘發SASP相關細胞激素的表現,揭露Rta在免疫調控方面的潛在角色。

    Epstein-Barr virus (EBV) lytic proteins play certain roles in development of EBV-related diseases. For example, a viral lytic transactivator Zta can upregulate expression of inflammatory cytokines. Rta, another lytic transactivator, is known to regulate many viral lytic genes, but its roles in regulation of cellular genes are less addressed. Notably, Rta has been reported to induce cellular senescence. Considering that cellular senescence is frequently accompanied by secretion of various immunoregulatory cytokines, a state called senescence-associated secretory phenotype (SASP), we wondered if Rta is capable of inducing SASP cytokines. In this study, we found that Rta induced at least four SASP cytokines, including interleukin (IL)-6, granulocyte macrophage colony-stimulating factor (GM-CSF), macrophage inflammatory protein (MIP)-1α and MIP-1β. In EBV-negative, NPC-derived epithelial cells, Rta increased expression of the four cytokines at both RNA and protein levels, and also activated their gene promoters. The C-terminus of Rta was required for induction of all these cytokines, while the nuclear localization signal of Rta was not essential for IL-6 induction. Furthermore, we found that Rta activated p38 mitogen-activated protein kinase (MAPK) and thus increased expression of estrogen receptor (ER)α. Inhibitor experiments indicated that Rta-triggered IL-6 induction was dependent on both p38 MAPK and ERα. Rta-induced MIP-1α/β expression required MAPK, ERα and E2F signaling pathways, while these pathways were not involved in Rta-induce GM-CSF expression. In conclusion, we demonstrate that Rta can induce SASP cytokines through multiple mechanisms, revealing its potential roles in immune regulation.

    中文摘要 I Abstract II Acknowledgment III Contents IV Figure List VI Abbreviations VII Introduction 1 Epstein-Barr virus 1 EBV-related diseases 2 EBV life cycle: the latent and lytic states 3 EBV lytic transactivator Rta 5 Cellular senescence 7 Estrogen receptor α 8 Research rationale 9 Materials and methods 11 Cell culture and drug treatment 11 Plasmids 11 Plasmid DNA preparation 12 Transfection with plasmid DNA 13 Immunoblotting assay 13 RNA extraction 14 cDNA synthesis 15 Quantitative RT-PCR 16 Reporter assay 17 Enzyme-linked immunosorbent assay (ELISA) 17 Results 19 Rta induces cellular senescence and senescence-associated cytokines. 19 The C-terminus of Rta is required for induction of IL-6, GM-CSF, MIP-1α and MIP-1β, while the nuclear localization signal of Rta is not essential for IL-6 induction. 20 Signaling pathways and transcriptional factors are differentially involved in Rta-mediated induction of IL-6, GM-CSF, MIP-1α and MIP-1β. 21 Rta-induced IL-6 expression requires ERα and p38 MAPK. 22 Rta increases ERα expression and activates p38 MAPK, and Rta-induced ERα expression is dependent on p38 MAPK activation. 23 Discussion 24 Rta induces SASP cytokines 24 Proposed mechanisms of Rta-induced IL-6 expression 25 Possible mechanisms of Rta-induced GM-CSF 27 Rta-mediated regulation of MIP-1α and MIP-1β 28 Potential roles of Rta-induced senescence-associated cytokines in EBV-related diseases 28 References 30 Figures 38 Curriculum vitae 53

    Adamson, A. L., D. Darr, E. Holley-Guthrie, R. A. Johnson, A. Mauser, J. Swenson and S. Kenney (2000). Epstein-Barr virus immediate-early proteins BZLF1 and BRLF1 activate the ATF2 transcription factor by increasing the levels of phosphorylated p38 and c-Jun N-terminal kinases. J Virol 74, 1224-1233.

    Ai, P., T. Wang, H. Zhang, Y. Wang, C. Song, L. Zhang, Z. Li and H. Hu (2013). Determination of antibodies directed at EBV proteins expressed in both latent and lytic cycles in nasopharyngeal carcinoma. Oral Oncol 49, 326-331.

    Ali, S., D. Metzger, J. M. Bornert and P. Chambon (1993). Modulation of transcriptional activation by ligand-dependent phosphorylation of the human oestrogen receptor A/B region. EMBO J 12, 1153-1160.

    Amon, W. and P. J. Farrell (2005). Reactivation of Epstein-Barr virus from latency. Rev Med Virol 15, 149-156.

    Anderson, I. and J. Gorski (2000). Estrogen receptor alpha interaction with estrogen response element half-sites from the rat prolactin gene. Biochemistry 39, 3842-3847.

    Baer, R., A. T. Bankier, M. D. Biggin, P. L. Deininger, P. J. Farrell, T. J. Gibson, G. Hatfull, G. S. Hudson, S. C. Satchwell, C. Seguin and et al. (1984). DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310, 207-211.

    Bayne, L. J., G. L. Beatty, N. Jhala, C. E. Clark, A. D. Rhim, B. Z. Stanger and R. H. Vonderheide (2012). Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21, 822-835.

    Bunone, G., P. A. Briand, R. J. Miksicek and D. Picard (1996). Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J 15, 2174-2183.

    Chang, L. K., J. Y. Chung, Y. R. Hong, T. Ichimura, M. Nakao and S. T. Liu (2005). Activation of Sp1-mediated transcription by Rta of Epstein-Barr virus via an interaction with MCAF1. Nucleic Acids Res 33, 6528-6539.

    Chang, Y., H. H. Lee, S. S. Chang, T. Y. Hsu, P. W. Wang, Y. S. Chang, K. Takada and C. H. Tsai (2004). Induction of Epstein-Barr virus latent membrane protein 1 by a lytic transactivator Rta. J Virol 78, 13028-13036.

    Chen, L. W., V. Raghavan, P. J. Chang, D. Shedd, L. Heston, H. J. Delecluse and G. Miller (2009). Two phenylalanines in the C-terminus of Epstein-Barr virus Rta protein reciprocally modulate its DNA binding and transactivation function. Virology 386, 448-461.

    Chen, Y. L., Y. J. Chen, W. H. Tsai, Y. C. Ko, J. Y. Chen and S. F. Lin (2009). The Epstein-Barr virus replication and transcription activator, Rta/BRLF1, induces cellular senescence in epithelial cells. Cell Cycle 8, 58-65.

    Cockerill, P. N., C. S. Osborne, A. G. Bert and R. J. Grotto (1996). Regulation of GM-CSF gene transcription by core-binding factor. Cell Growth Differ 7, 917-922.

    Coppe, J. P., P. Y. Desprez, A. Krtolica and J. Campisi (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5, 99-118.

    Coppe, J. P., C. K. Patil, F. Rodier, Y. Sun, D. P. Munoz, J. Goldstein, P. S. Nelson, P. Y. Desprez and J. Campisi (2008). Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6, 2853-2868.

    Coutts, A. S. and L. C. Murphy (1998). Elevated mitogen-activated protein kinase activity in estrogen-nonresponsive human breast cancer cells. Cancer Res 58, 4071-4074.

    Dasgupta, S. and J. Eudaly (2012). Estrogen receptor-alpha mediates Toll-like receptor-2 agonist-induced monocyte chemoattractant protein-1 production in mesangial cells. Results Immunol 2, 196-203.

    Delecluse, H. J., R. Feederle, B. O'Sullivan and P. Taniere (2007). Epstein Barr virus-associated tumours: an update for the attention of the working pathologist. J Clin Pathol 60, 1358-1364.

    El-Guindy, A., M. Ghiassi-Nejad, S. Golden, H. J. Delecluse and G. Miller (2013). Essential role of Rta in lytic DNA replication of Epstein-Barr virus. J Virol 87, 208-223.

    Epstein, M. A., G. Henle, B. G. Achong and Y. M. Barr (1965). Morphological and biological studies on a virus in cultured lymphoblasts from Burkitt's lymphoma. J Exp Med 121, 761-770.

    Fang, C. Y., C. H. Lee, C. C. Wu, Y. T. Chang, S. L. Yu, S. P. Chou, P. T. Huang, C. L. Chen, J. W. Hou, Y. Chang, C. H. Tsai, K. Takada and J. Y. Chen (2009). Recurrent chemical reactivations of EBV promotes genome instability and enhances tumor progression of nasopharyngeal carcinoma cells. Int J Cancer 124, 2016-2025.

    Feederle, R., M. Kost, M. Baumann, A. Janz, E. Drouet, W. Hammerschmidt and H. J. Delecluse (2000). The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J 19, 3080-3089.

    Galien, R. and T. Garcia (1997). Estrogen receptor impairs interleukin-6 expression by preventing protein binding on the NF-kappaB site. Nucleic Acids Res 25, 2424-2429.

    Gandini, O., H. Kohno, S. Curtis and K. S. Korach (1997). Two transcription activation functions in the amino terminus of the mouse estrogen receptor that are affected by the carboxy terminus. Steroids 62, 508-515.

    Given, D. and E. Kieff (1979). DNA of Epstein-Barr virus. VI. Mapping of the internal tandem reiteration. J Virol 31, 315-324.

    Grisouard, J., S. Medunjanin, A. Hermani, A. Shukla and D. Mayer (2007). Glycogen synthase kinase-3 protects estrogen receptor alpha from proteasomal degradation and is required for full transcriptional activity of the receptor. Mol Endocrinol 21, 2427-2439.

    Gruffat, H., E. Manet, A. Rigolet and A. Sergeant (1990). The enhancer factor R of Epstein-Barr virus (EBV) is a sequence-specific DNA binding protein. Nucleic Acids Res 18, 6835-6843.

    Gruffat, H. and A. Sergeant (1994). Characterization of the DNA-binding site repertoire for the Epstein-Barr virus transcription factor R. Nucleic Acids Res 22, 1172-1178.

    Guo, Y., F. Xu, T. Lu, Z. Duan and Z. Zhang (2012). Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev 38, 904-910.

    Gustafsson, J. A. (2003). What pharmacologists can learn from recent advances in estrogen signalling. Trends Pharmacol Sci 24, 479-485.

    Heilmann, A. M., M. A. Calderwood, D. Portal, Y. Lu and E. Johannsen (2012). Genome-wide analysis of Epstein-Barr virus Rta DNA binding. J Virol 86, 5151-5164.

    Ho, C. H., C. F. Hsu, P. F. Fong, S. K. Tai, S. L. Hsieh and C. J. Chen (2007). Epstein-Barr virus transcription activator Rta upregulates decoy receptor 3 expression by binding to its promoter. J Virol 81, 4837-4847.

    Hoebe, E. K., C. Wille, E. S. Hopmans, A. R. Robinson, J. M. Middeldorp, S. C. Kenney and A. E. Greijer (2012). Epstein-Barr virus transcription activator R upregulates BARF1 expression by direct binding to its promoter, independent of methylation. J Virol 86, 11322-11332.

    Hsu, M., S. Y. Wu, S. S. Chang, I. J. Su, C. H. Tsai, S. J. Lai, A. L. Shiau, K. Takada and Y. Chang (2008). Epstein-Barr virus lytic transactivator Zta enhances chemotactic activity through induction of interleukin-8 in nasopharyngeal carcinoma cells. J Virol 82, 3679-3688.

    Hsu, T. Y., Y. Chang, P. W. Wang, M. Y. Liu, M. R. Chen, J. Y. Chen and C. H. Tsai (2005). Reactivation of Epstein-Barr virus can be triggered by an Rta protein mutated at the nuclear localization signal. J Gen Virol 86, 317-322.

    Huang, S. Y., M. J. Hsieh, C. Y. Chen, Y. J. Chen, J. Y. Chen, M. R. Chen, C. H. Tsai, S. F. Lin and T. Y. Hsu (2012). Epstein-Barr virus Rta-mediated transactivation of p21 and 14-3-3sigma arrests cells at the G1/S transition by reducing cyclin E/CDK2 activity. J Gen Virol 93, 139-149.

    Joel, P. B., J. Smith, T. W. Sturgill, T. L. Fisher, J. Blenis and D. A. Lannigan (1998). pp90rsk1 regulates estrogen receptor-mediated transcription through phosphorylation of Ser-167. Mol Cell Biol 18, 1978-1984.

    Jones, R. J., W. T. Seaman, W. H. Feng, E. Barlow, S. Dickerson, H. J. Delecluse and S. C. Kenney (2007). Roles of lytic viral infection and IL-6 in early versus late passage lymphoblastoid cell lines and EBV-associated lymphoproliferative disease. Int J Cancer 121, 1274-1281.

    Klein, G., G. Pearson, G. Henle, W. Henle, V. Diehl and J. C. Niederman (1968). Relation between Epstein-- Barr viral and cell membrane immunofluorescence in Burkitt tumor cells. II. Comparison of cells and sera from patients with Burkitt's lymphoma and infectious mononucleosis. J Exp Med 128, 1021-1030.

    Kortlever, R. M. and R. Bernards (2006). Senescence, wound healing and cancer: the PAI-1 connection. Cell Cycle 5, 2697-2703.

    Kuilman, T., C. Michaloglou, L. C. Vredeveld, S. Douma, R. van Doorn, C. J. Desmet, L. A. Aarden, W. J. Mooi and D. S. Peeper (2008). Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019-1031.

    Kushner, P. J., D. A. Agard, G. L. Greene, T. S. Scanlan, A. K. Shiau, R. M. Uht and P. Webb (2000). Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol 74, 311-317.

    Kutok, J. L. and F. Wang (2006). Spectrum of Epstein-Barr virus-associated diseases. Annu Rev Pathol 1, 375-404.

    Lai, H. C., J. R. Hsiao, C. W. Chen, S. Y. Wu, C. H. Lee, I. J. Su, K. Takada and Y. Chang (2010). Endogenous latent membrane protein 1 in Epstein-Barr virus-infected nasopharyngeal carcinoma cells attracts T lymphocytes through upregulation of multiple chemokines. Virology 405, 464-473.

    Lau, K. M., S. H. Cheng, K. W. Lo, S. A. Lee, J. K. Woo, C. A. van Hasselt, S. P. Lee, A. B. Rickinson and M. H. Ng (2007). Increase in circulating Foxp3+CD4+CD25(high) regulatory T cells in nasopharyngeal carcinoma patients. Br J Cancer 96, 617-622.
    Lee, C. H., T. H. Yeh, H. C. Lai, S. Y. Wu, I. J. Su, K. Takada and Y. Chang (2011). Epstein-Barr virus Zta-induced immunomodulators from nasopharyngeal carcinoma cells upregulate interleukin-10 production from monocytes. J Virol 85, 7333-7342.

    Lee, Y. H., Y. F. Chiu, W. H. Wang, L. K. Chang and S. T. Liu (2008). Activation of the ERK signal transduction pathway by Epstein-Barr virus immediate-early protein Rta. J Gen Virol 89, 2437-2446.

    Liu, C., N. D. Sista and J. S. Pagano (1996). Activation of the Epstein-Barr virus DNA polymerase promoter by the BRLF1 immediate-early protein is mediated through USF and E2F. J Virol 70, 2545-2555.

    Lo, Y. M. (2001). Quantitative analysis of Epstein-Barr virus DNA in plasma and serum: applications to tumor detection and monitoring. Ann N Y Acad Sci 945, 68-72.

    Longo, M., M. Brama, M. Marino, S. Bernardini, K. S. Korach, W. C. Wetsel, R. Scandurra, T. Faraggiana, G. Spera, R. Baron, A. Teti and S. Migliaccio (2004). Interaction of estrogen receptor alpha with protein kinase C alpha and c-Src in osteoblasts during differentiation. Bone 34, 100-111.

    Ma, S. D., S. Hegde, K. H. Young, R. Sullivan, D. Rajesh, Y. Zhou, E. Jankowska-Gan, W. J. Burlingham, X. Sun, M. L. Gulley, W. Tang, J. E. Gumperz and S. C. Kenney (2011). A new model of Epstein-Barr virus infection reveals an important role for early lytic viral protein expression in the development of lymphomas. J Virol 85, 165-177.

    Manet, E., C. Allera, H. Gruffat, I. Mikaelian, A. Rigolet and A. Sergeant (1993). The acidic activation domain of the Epstein-Barr virus transcription factor R interacts in vitro with both TBP and TFIIB and is cell-specifically potentiated by a proline-rich region. Gene Expr 3, 49-59.

    Manet, E., A. Rigolet, H. Gruffat, J. F. Giot and A. Sergeant (1991). Domains of the Epstein-Barr virus (EBV) transcription factor R required for dimerization, DNA binding and activation. Nucleic Acids Res 19, 2661-2667.

    Marsaud, V., A. Gougelet, S. Maillard and J. M. Renoir (2003). Various phosphorylation pathways, depending on agonist and antagonist binding to endogenous estrogen receptor alpha (ERalpha), differentially affect ERalpha extractability, proteasome-mediated stability, and transcriptional activity in human breast cancer cells. Mol Endocrinol 17, 2013-2027.

    Murata, T. and T. Tsurumi (2014). Switching of EBV cycles between latent and lytic states. Rev Med Virol 24, 142-153.

    Park, K. J., V. Krishnan, B. W. O'Malley, Y. Yamamoto and R. B. Gaynor (2005). Formation of an IKKalpha-dependent transcription complex is required for estrogen receptor-mediated gene activation. Mol Cell 18, 71-82.

    Petz, L. N. and A. M. Nardulli (2000). Sp1 binding sites and an estrogen response element half-site are involved in regulation of the human progesterone receptor A promoter. Mol Endocrinol 14, 972-985.

    Pradhan, M., S. C. Baumgarten, L. A. Bembinster and J. Frasor (2012). CBP mediates NF-kappaB-dependent histone acetylation and estrogen receptor recruitment to an estrogen response element in the BIRC3 promoter. Mol Cell Biol 32, 569-575.

    Qi, X., H. Zhi, A. Lepp, P. Wang, J. Huang, Z. Basir, C. R. Chitambar, C. R. Myers and G. Chen (2012). p38gamma mitogen-activated protein kinase (MAPK) confers breast cancer hormone sensitivity by switching estrogen receptor (ER) signaling from classical to nonclassical pathway via stimulating ER phosphorylation and c-Jun transcription. J Biol Chem 287, 14681-14691.

    Ray, P., S. K. Ghosh, D. H. Zhang and A. Ray (1997). Repression of interleukin-6 gene expression by 17 beta-estradiol: inhibition of the DNA-binding activity of the transcription factors NF-IL6 and NF-kappa B by the estrogen receptor. FEBS Lett 409, 79-85.

    Saville, B., M. Wormke, F. Wang, T. Nguyen, E. Enmark, G. Kuiper, J. A. Gustafsson and S. Safe (2000). Ligand-, cell-, and estrogen receptor subtype (alpha/beta)-dependent activation at GC-rich (Sp1) promoter elements. J Biol Chem 275, 5379-5387.

    Swenson, J. J., A. E. Mauser, W. K. Kaufmann and S. C. Kenney (1999). The Epstein-Barr virus protein BRLF1 activates S phase entry through E2F1 induction. J Virol 73, 6540-6550.

    Tsurumi, T., M. Fujita and A. Kudoh (2005). Latent and lytic Epstein-Barr virus replication strategies. Rev Med Virol 15, 3-15.

    Wang, Y., Y. Qu, X. L. Zhang, J. Xing, X. L. Niu, X. Chen and Z. M. Li (2014). Autocrine production of interleukin-6 confers ovarian cancer cells resistance to tamoxifen via ER isoforms and SRC-1. Mol Cell Endocrinol 382, 791-803.

    Yakimchuk, K., M. Jondal and S. Okret (2013). Estrogen receptor alpha and beta in the normal immune system and in lymphoid malignancies. Mol Cell Endocrinol 375, 121-129.

    Yi, H., Y. Bai, X. Zhu, L. Lin, L. Zhao, X. Wu, S. Buch, L. Wang, J. Chao and H. Yao (2014). IL-17A Induces MIP-1alpha Expression in Primary Astrocytes via Src/MAPK/PI3K/NF-kB Pathways: Implications for Multiple Sclerosis. J Neuroimmune Pharmacol.

    Young, L. S. and A. B. Rickinson (2004). Epstein-Barr virus: 40 years on. Nat Rev Cancer 4, 757-768.

    Zhang, G., C. M. Tsang, W. Deng, Y. L. Yip, V. W. Lui, S. C. Wong, A. L. Cheung, P. M. Hau, M. Zeng, M. L. Lung, H. Chen, K. W. Lo, K. Takada and S. W. Tsao (2013). Enhanced IL-6/IL-6R signaling promotes growth and malignant properties in EBV-infected premalignant and cancerous nasopharyngeal epithelial cells. PLoS One 8, e62284.

    Zhang, L. and G. J. Nabel (1994). Positive and negative regulation of IL-2 gene expression: role of multiple regulatory sites. Cytokine 6, 221-228.

    Zhu, L. H., S. Gao, R. Jin, L. L. Zhuang, L. Jiang, L. Z. Qiu, H. G. Xu and G. P. Zhou (2014). Repression of interferon regulatory factor 3 by the Epstein-Barr virus immediate-early protein Rta is mediated through E2F1 in HeLa cells. Mol Med Rep 9, 1453-1459.

    無法下載圖示 校內:2019-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE