簡易檢索 / 詳目顯示

研究生: 蕭諭勵
Hsiao, Yu-Li
論文名稱: 以衛星資料評估氣膠光學厚度與氣候、人類活動與生質燃燒之時空分佈及關聯性:以東南亞地區為例
Evaluating spatial and temporal variations of aerosol optical depth, climate factors, human activities and biomass burning over Southeast Asia using satellite data
指導教授: 張智華
Chang, Chih-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 153
中文關鍵詞: 氣膠光學厚度生質燃燒衛星遙測氣候因子人類活動
外文關鍵詞: Aerosol optical depth, biomass open burning, remote sensing, climate factors, human activities
相關次數: 點閱:113下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在東南亞(Southeast Asia,SEA)的幾個主要城市(如:曼谷、吉隆坡、新加坡、雅加達等)中,有許多的空氣品質問題,如粉塵、光煙霧、霾害等,其發生之主要原因為露天生質燃燒排放的煙物、氣膠進入大氣中。隨著大氣氣膠監測技術進步,觀測露天燃燒已有一系列的衛星產品。本研究蒐集多種衛星資料如:氣膠光學厚度(Aerosol Optical Depth,AOD)、降雨、城市夜光、Burned area (BA)、Active fire (AF)以評估2002年至2011年大氣氣膠光學厚度與氣候、人類活動及生質燃燒之時空分布關聯性。本研究應用衛星資料如下:1. 利用中分辨率成像光譜儀(Moderate Resolution Imaging Spectroradiometer,MODIS)取得AOD;2. 三種BA產品包括透過植被改變與土地覆蓋分類取得的MCD45A1、從AF取得的GFED4.0以及包含了小規模火源的GFED4.0s;3. AF(MCD14ML);4. 美國國家海洋和大氣管理局(National Oceanic and Atmospheric Administration,NOAA)取得地表風;5. 利用IGBP分類所取得的土地覆蓋數據(MCD12Q1);6. 全球降水氣候計畫(Global Precipitation Climatology Project,GPCP)取得雨量資料;7. 代表人類活動情況的DMSP-OLS夜間燈光,以上所有衛星數據的轉換、顯示和分析皆利用ESRI ArcGIS®10.2中的空間分析工具進行分析。
    為了更容易了解各種影響因子和大氣氣膠之間的關係,結果分為五個部分討論。首先,分析了2002年至2011年氣膠光學厚度之時空變化。我們從每月AOD分布圖定義了位於北部和南部熱帶區域的高氣膠區域(High Aerosol Areas,HAAs)。北部的HAA包括:緬甸、越南、遼國、泰國和柬埔寨,此區AOD高峰月份為十一月至三月。南部的HAA包括:馬來西亞、蘇門答臘、爪哇和卡里曼丹,其中AOD高峰月份為五月到十月。一般來說,AOD在每區的高峰月份發生在旱季,同時也提供證據表明了東南亞的AOD分布在時間上有一定程度與生質燃燒的關聯是一致的。
    第二,是最近發布的BA產品(GFED4.0s)顯示,在北部熱帶區的緬甸有最大年燃燒面積,其次是柬埔寨和泰國。在南部熱帶區發生火災主要分布在印尼,其燃燒高峰月在每一地區也與旱季時間一致。可以發現到,在北部熱帶區域中的燃燒面積比在南部熱帶區多了十倍;但是平均每年的AOD在南部HAA與北部HAA非常相似。這證明了泥炭地發生生質燃燒會排放更多的懸浮微粒。
    第三,評估AOD和氣候之間的相關性,發現AOD與降雨呈現反比,可見雨季時會導致AOD有一定程度上的減少。而每月平均風速可解釋部分AOD在北部的HAA大規模移動(十一月至次年四月),但對於南部的HAA,風和AOD的空間分布之間沒有顯著的相關性。第四,AOD普遍在城市和大都市地區較高,但AOD與人類活動的強度之間沒有顯著時間分布相關性。
    最後,我們量化AOD與生質燃燒間的關聯性並將研究區域聚焦於兩個HAA地區,並利用不同的BA產品代表生質燃燒情況。我們應用這三個BA產品(包括:MCD45A1,GFED4.0和GFED4.0s),GFED4.0s兼顧GFED4.0和燃燒造成小規模火災,並能更好地解釋AOD在HAA區域的時空分布(北部和南部HAA分別R=0.5和0.85)。常用的MCD45A1 產品和AOD之間的相關性不顯著(北部和南部HAA分別R =0.25和0.58)。相比其他燃燒產品(MCD14ML),我們發現MCD45A1燃燒面積對於AOD的相關性最低,並懷疑此產品是透過植被變化去計算燃燒面積,因此可能嚴重低估了燃燒的區域。為了更好的量化AOD和生物質燃燒之間的關係,這項研究提出兩個簡單的迴歸模型,其使用遙測取得燃燒產品資訊,並分別估計在HAA區域(北部、南部) AOD每月的分布情況。北的HAA的迴歸模型採用MCD14ML資料作為自變量,獲得R2=0.76;南部的HAA迴歸模型使用GFED4.0s 資料作為自變量,獲得R2=0.85。由上述可知此經驗模型可解釋在HAA區AOD的時間趨勢。

    Major cities in Southeast Asia (SEA) are faced with severe air quality problems including dust, smog and haze pollution, which are mainly caused by atmospheric aerosols (smoke) from biomass burning. Technological advances in monitoring atmospheric aerosol and biomass burning have been fostered by a series of new space based satellite instruments and data products. In this study, a variety of satellite product maps of aerosol optical depth (AOD), precipitation, wind, city light, burned area (BA) and active fire were collected and processed to evaluate the spatial and temporal variations among atmospheric aerosol, climate factors, human activities and biomass burning in SEA during 2002-2011. Satellite data applied in this study includes: 1) the Moderate Resolution Imaging Spectroradiometer (MODIS) derived AOD; 2) three MODIS BA products, including the BA derived from vegetation change and land-cover classification (MCD45A1), the BA derived from active-fire (GFED4.0), and the combination of GFED4.0 and BA caused by small-scale fires (GFED4.0s); 3) the MODIS active fire data (MCD14ML); 4) the National Oceanic and Atmospheric Administration (NOAA) surface wind data; 5) the MODIS International Geosphere-Biosphere Programme (IGBP) classes land cover dataset (MCD12Q1); 6) the Global Precipitation Climatology Project (GPCP) monthly precipitation dataset; and 7) the DMSP-OLS nighttime light representing the strength of human activities. All satellite data was converted, visualized, summarized and analyzed using the spatial analyst tool within ESRI ArcGIS® 10.2.
    To better understand the cause and effect relationships between various causative factors and atmospheric aerosols, the results were organized into five sections. First, the spatial and temporal variations of aerosol optical depth in SEA during 2002 to 2011 were examined. High aerosol areas (HAA) located in the northern and southern intertropical zone are identified, respectively, from the monthly AOD distribution maps. The northern HAA consists of Myanmar, Vietnam, Laos, Thailand, and Cambodia, with the peak AOD months are from November to March. The southern HAA includes Malaysia, Sumatra, Java, and Kalimantan, with the peak AOD months are from May to October. Generally, the peak AOD months are consistent with the dry season in each region, which provides evidence that the temporal AOD distribution in SEA is partly related to biomass burning.
    Second, the recently released BA product (GFED4.0s) shows that Myanmar has the largest annual BA in north intertropical zone, followed by Cambodia, and Thailand. Burned areas in south intertropical zone are mainly distributed in Indonesia. The peak burning months are also consistent with the dry months in each region. Noted that the burning area in the northern intertropical zone is ten times higher than that found in southern intertropical zone. However, the level of annual average AOD in the southern HAA is very similar with that in the northern HAA. It is evidence that biomass burning in peatlands results in a higher emission factor of particulate matter.
    Third, the correlations between AOD and climate factors were assessed. The level of AOD is generally inversely proportional to precipitation, which is partly related to less biomass burning occurring during the wet seasons. The monthly average wind climatology can partly explain the large scale movement of aerosol plumes in the northern HAA during the burning months (November to next April). For the southern HAA, there is no significant correlation between wind and the spatial distribution of AOD. Fourth, the level of AOD is generally high in urban and metropolitan areas, however, there is no significant temporal correlation between AOD and the strength of human activity.
    Finally, to seek a quantifiable linkage between AOD and biomass burning, the study area focuses on HAAs only, and different products representing biomass burning are applied. Among the three BA products applied (MCD45A1, GFED4.0, and GFED4.0s), GFED4.0s considers both the BA identified by GFED4.0 and BA caused by small-scale fires, and can better explain the temporal and spatial distributions of AOD in HAAs (R=0.5 and 0.85 for northern and southern HAA, respectively). The correlation between commonly used MCD45A1 BA and AOD is not significant (R=0.25 and 0.58 for north and south HAA, respectively). Compared to other BA or active fire products, it was found that the MCD45A1 BA has the lowest correlation to AOD, and it is suspected that the BA derived from vegetation-change may seriously underestimate the area of burning in SEA. To better quantify the relationship between AOD and biomass burning, this study develops two simple regression models for the estimation of monthly AOD from remotely sensed burning products in HAAs. The regression model developed for northern HAA uses MCD14ML active fire data as the independent variable and obtained a R2 value of 0.57. The model developed for southern HAA uses GFED4.0s BA data as the independent variable and obtained a R2 value of 0.76. Generally, the empirical models can explain well the temporal trends of AOD in HAAs.

    摘要 I ABSTRACT III Acknowledgement V Table of Contents VI Table Index IX Figure Index XII Chapter 1 INTRODUCTION 1 1.1 Preface 1 1.2 Motivation 3 1.3 Objective 3 Chapter 2 LITERATURE REVIEW 4 2.1 Remote sensing of aerosol 4 2.1.1 Concepts of Aerosol 4 2.1.2 Aerosol optical depth 13 2.2 Emission inventory of biomass open burning 16 2.2.1 Concepts of Biomass open burning 16 2.2.2 Inventory of emission 21 2.2.3 Land cover effect for biomass open burning 24 2.2.4 The effect of peatland on biomass open burning 27 2.3 Remote sensing of burned area and active fire 31 2.4 The relationship of biomass open burning and AOD 36 Chapter 3 MATERIAL AND METHODOLOGY 37 3.1 Research framework 37 3.2 Study Area 39 3.2.1 Geographic and geology in Southeast Asia 39 3.2.2 Climate in Southeast Asia 42 3.2.3 Economic crop in Southeast Asia 45 3.3 Dataset 48 3.3.1 Study Period 48 3.3.2 Data collection 48 3.3.3 Aerosol optical depth (AOD) products 51 3.3.4 Burned area and active fire products 52 3.3.5 Land cover products 55 3.3.6 Precipitation data 56 3.3.7 Surface wind products 57 3.3.8 Nighttime light products 58 3.4 Methodology 59 3.4.1 Zonal statistic (Burned area, active fire, AOD and, precipitation) 59 3.4.2 Land cover data processing 60 3.4.3 Wind data processing 63 3.4.4 Nighttime light processing 64 3.4.5 Hot spot analysis (Getis-Ord Gi* statistic) 64 3.4.6 Statistical Methods 66 Chapter 4 RESULT AND DISCUSSION 68 4.1 Spatial and temporal variation of AOD in Southeast Asia 68 4.2 Biomass burning in Southeast Asia 70 4.4.1 Myanmar 72 4.4.2 Cambodia 74 4.4.3 Thailand 76 4.4.4 Indonesia 78 4.4.5 Laos 81 4.4.6 Vietnam 83 4.4.7 Philippines 85 4.4.8 Malaysia 87 4.3 Correlations between AOD and climate factors in Southeast Asia 92 4.3.1 Precipitation 92 4.3.2 Wind 94 4.4 Correlations between AOD and human activities in Southeast Asia 96 4.5 Spatial and temporal correlations between AOD and biomass burning 98 4.5.1 High aerosol areas (HAAs) 98 4.5.2 Comparing the spatial correlations between AOD and difference Biomass Open Burning products in Southeast Asia 100 4.5.3 Land-cover effects in HAAs 112 4.5.4 Precipitation effect in HAAs 114 4.5.5 The correlation analysis for AOD and burned area, active fire, precipitation 115 4.5.6 Regression model 119 Chapter 5 CONCLUSION 122 REFERENCE 125 APPENDIX 1 The MCD45A1 burned area products calculate in Southeast Asia country during 2002-2011 138 APPENDIX 2 The GFED4.0 burned area products calculate in Southeast Asia country during 2002-2011 146

    Achard, F., Eva, H. D., Stibig, H.-J., Mayaux, P., Gallego, J., Richards, T., & Malingreau, J.-P. (2002). Determination of deforestation rates of the world's humid tropical forests. Science, 297(5583), 999-1002. Retrieved from http://sfx.lib.ncku.edu.tw:3410/sfxlcl41?sid=google&auinit=F&aulast=Achard&atitle=Determination%20of%20deforestation%20rates%20of%20the%20world%27s%20humid%20tropical%20forests&id=pmid%3A12169731
    Adler, R., Adler, G., Huffman, A., Chang, R., Ferraro, P.-P., Xie, J., . . . Nelkin. (2003). The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present). Journal of hydrometeorology, 4(6), 1147-1167. Retrieved from http://sfx.lib.ncku.edu.tw:3410/sfxlcl41?sid=google&auinit=RF&aulast=Adler&atitle=The%20version-2%20global%20precipitation%20climatology%20project%20%28GPCP%29%20monthly%20precipitation%20analysis%20%281979-present%29&id=doi%3A10.1175%2F1525-7541%282003%29004%3C1147%3ATVGPCP%3E2.0.CO%3B2&title=Journal%20of%20hydrometeorology&volume=4&issue=6&date=2003&spage=1147&issn=1525-755X
    Akimoto, H. (2003). Global air quality and pollution. Science, 302(5651), 1716-1719. doi:10.1126/science.1092666
    Aljosja Hooijer, Marcel Silvius, Henk Wösten, & Page, S. (2006). Peat CO2 report Assessment of CO2 emissions from drained peatlands in SE Asia. Retrieved from
    Alonso-Canas, I., & Chuvieco, E. (2015). Global burned area mapping from ENVISAT-MERIS and MODIS active fire data. Remote Sensing of Environment, 163, 140-152. doi:10.1016/j.rse.2015.03.011
    Alpert, P., Alpert, O., Shvainshtein, P., & Kishcha. (2012). AOD Trends over Megacities Based on Space Monitoring Using MODIS and MISR. American journal of climate change, 1(03), 117-131. Retrieved from http://sfx.lib.ncku.edu.tw:3410/sfxlcl41?sid=google&auinit=P&aulast=Alpert&atitle=AOD%20trends%20over%20megacities%20based%20on%20space%20monitoring%20using%20MODIS%20and%20MISR&id=doi%3A10.4236%2Fajcc.2012.13010&title=American%20journal%20of%20climate%20change&volume=1&issue=03&date=2012&spage=117&issn=2167-9495
    Andreae, M. O., & Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15(4), 955-966. doi:10.1029/2000gb001382
    Angelo, J. A. (2009). Satellites: Facts On File, Incorporated.
    Barbosa, P. M., Stroppiana, D., Grégoire, J.-M., & Cardoso Pereira, J. M. (1999). An assessment of vegetation fire in Africa (1981-1991): Burned areas, burned biomass, and atmospheric emissions. Global Biogeochemical Cycles, 13(4), 933-950. doi:10.1029/1999gb900042
    Brunekreef, B., & Holgate, S. T. (2002). Air pollution and health. The Lancet, 360(9341), 1233-1242. doi:10.1016/s0140-6736(02)11274-8
    Calvo, A. I. (2011). Aerosol Size Distribution and Gaseous Products from the Oven-controlled Combustion of Straw Materials. Aerosol and Air Quality Research. doi:10.4209/aaqr.2011.02.0015
    Chýlek, P., Lesins, G. B., Videen, G., Wong, J. G. D., Pinnick, R. G., Ngo, D., & Klett, J. D. (1996). Black carbon and absorption of solar radiation by clouds. Journal of Geophysical Research, 101(D18), 23365. doi:10.1029/96jd01901
    Chang, C.-H. (2013). Emissions Inventory for Rice Straw Open Burning in Taiwan Based on Burned Area Classification and Mapping Using Formosat-2 Satellite Imagery. Aerosol and Air Quality Research. doi:10.4209/aaqr.2012.06.0150
    Chang, D., & Song, Y. (2010). Estimates of biomass burning emissions in tropical Asia based on satellite-derived data. Atmos. Chem. Phys., 10(5), 2335-2351. doi:10.5194/acp-10-2335-2010
    Christian, T. J. (2003). Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels. Journal of Geophysical Research, 108(D23). doi:10.1029/2003jd003704
    Crutzen, P. J., & Andreae, M. O. (1990). Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science, 250(4988), 1669-1678.
    Crutzen, P. J., & Heidt, L. E. (1979). Biomass burning as a source of atmospheric gases CO, H2, N2O, NO, CH3Cl and COS.
    Deng, X., Tie, X., Zhou, X., Wu, D., Zhong, L., Tan, H., . . . Deng, T. (2008). Effects of Southeast Asia biomass burning on aerosols and ozone concentrations over the Pearl River Delta (PRD) region. Atmospheric Environment, 42(36), 8493-8501. doi:10.1016/j.atmosenv.2008.08.013
    Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O'Neill, N. T., . . . Kinne, S. (1999). Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. Journal of Geophysical Research, 104(D24), 31333. doi:10.1029/1999jd900923
    Elvidge, C. D., Baugh, K. E., Dietz, J. B., Bland, T., Sutton, P. C., & Kroehl, H. W. (1999). Radiance Calibration of DMSP-OLS Low-Light Imaging Data of Human Settlements. Remote Sensing of Environment, 68(1), 77-88. doi:http://dx.doi.org/10.1016/S0034-4257(98)00098-4
    Elvidge, C. D., Baugh, K. E., Kihn, E. A., Kroehl, H. W., & Davis, E. R. (1997). Mapping city lights with nighttime data from the DMSP Operational Linescan System. Photogrammetric Engineering and Remote Sensing, 63(6), p. 727-734.
    Estrellan, C. R., & Iino, F. (2010). Toxic emissions from open burning. Chemosphere, 80(3), 193-207. doi:10.1016/j.chemosphere.2010.03.057
    FAOSM. (2015). FAO/UNESCO Soil Map of the World. Retrieved from http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
    FAOSTAT. (2015). Retrieved from http://faostat3.fao.org/home/E
    Florides, G. A., & Christodoulides, P. (2009). Global warming and carbon dioxide through sciences. Environ Int, 35(2), 390-401. doi:10.1016/j.envint.2008.07.007
    Fraser, R., Fraser, Y., Kaufman, R. L., & Mahoney. (1984). Satellite measurements of aerosol mass and transport. Atmospheric Environment, 18(12), 2577-2584. Retrieved from http://sfx.lib.ncku.edu.tw:3410/sfxlcl41?sid=google&auinit=RS&aulast=Fraser&atitle=Satellite%20measurements%20of%20aerosol%20mass%20and%20transport&id=doi%3A10.1016%2F0004-6981%2884%2990322-6&title=Atmospheric%20environment&volume=18&issue=12&date=1984&spage=2577&issn=0004-6981
    Gadde, B., Bonnet, S., Menke, C., & Garivait, S. (2009). Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environ Pollut, 157(5), 1554-1558. doi:10.1016/j.envpol.2009.01.004
    Gautam, R., Hsu, N. C., Eck, T. F., Holben, B. N., Janjai, S., Jantarach, T., . . . Lau, W. K. (2013). Characterization of aerosols over the Indochina peninsula from satellite-surface observations during biomass burning pre-monsoon season. Atmospheric Environment, 78, 51-59. doi:10.1016/j.atmosenv.2012.05.038
    Gaveau, D. L., Salim, M. A., Hergoualc'h, K., Locatelli, B., Sloan, S., Wooster, M., . . . Sheil, D. (2014). Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: evidence from the 2013 Sumatran fires. Sci Rep, 4, 6112. doi:10.1038/srep06112
    Germer, J., & Sauerborn, J. (2007). Estimation of the impact of oil palm plantation establishment on greenhouse gas balance. Environment, Development and Sustainability, 10(6), 697-716. doi:10.1007/s10668-006-9080-1
    Getis, A., & Ord. (1992). The Analysis of Spatial Association by Use of Distance Statistics. Geographical analysis, 24(3), 189-206. Retrieved from http://sfx.lib.ncku.edu.tw:3410/sfxlcl41?sid=google&auinit=A&aulast=Getis&atitle=The%20analysis%20of%20spatial%20association%20by%20use%20of%20distance%20statistics&id=doi%3A10.1111%2Fj.1538-4632.1992.tb00261.x&title=Geographical%20analysis&volume=24&issue=3&date=1992&spage=189&issn=0016-7363
    Giglio, L., Randerson, J. T., & van der Werf, G. R. (2013). Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). Journal of Geophysical Research: Biogeosciences, 118(1), 317-328. doi:10.1002/jgrg.20042
    Gupta, P., Christopher, S. A., Wang, J., Gehrig, R., Lee, Y., & Kumar, N. (2006). Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmospheric Environment, 40(30), 5880-5892. doi:10.1016/j.atmosenv.2006.03.016
    Hansen, J., Sato, M., Ruedy, R., Lacis, A., & Oinas, V. (2000). Global warming in the twenty-first century: an alternative scenario. Proc Natl Acad Sci U S A, 97(18), 9875-9880. doi:10.1073/pnas.170278997
    Hao, W. M., & Liu, M. H. (1994). Spatial and temporal distribution of tropical biomass burning. Global Biogeochemical Cycles, 8(4), 495–503. doi:10.1029/94GB02086
    Haruo Tsuruta, Eiji Oikawa, Syugo Watanabe, Toshiro Inoue, Makiko Hashimoto, Teruyuki Nakajima, . . . Koichiro Hirano. (2013). Biomass burning in Southeast Asia from field studies to satellite data analysis and the SPRINTARS model. Paper presented at the International workshop on inventory, modeling and climate impacts of greenhouse gas emissions (GHG's) and aerosols in the Asian region: Tsukuba, Japan.
    He, Y., & Bo. (2011). A consistency analysis of MODIS MCD12Q1 and MERIS Globcover land cover datasets over China. 2011 19th International Conference on Geoinformatics, 1-6. Retrieved from http://sfx.lib.ncku.edu.tw:3410/sfxlcl41?sid=google&auinit=Y&aulast=He&atitle=A%20consistency%20analysis%20of%20MODIS%20MCD12Q1%20and%20MERIS%20Globcover%20land%20cover%20datasets%20over%20China&id=doi%3A10.1109%2FGeoInformatics.2011.5980667
    Hess, M., Koepke, I., & Schult. (1998). Optical Properties of Aerosols and Clouds: The Software Package OPAC. Bulletin of the American Meteorological Society, 79(5), 831-844. Retrieved from http://sfx.lib.ncku.edu.tw:3410/sfxlcl41?sid=google&auinit=M&aulast=Hess&atitle=Optical%20properties%20of%20aerosols%20and%20clouds%3A%20The%20software%20package%20OPAC&id=doi%3A10.1175%2F1520-0477%281998%29079%3C0831%3AOPOAAC%3E2.0.CO%3B2&title=Bulletin%20of%20the%20American%20Meteorological%20Society&volume=79&issue=5&date=1998&spage=831&issn=0003-0007
    Hidy, G., Hoff, R., Christopher, S., Sharma, P., Poulsen, T., Poulsen, T., . . . Jeng, F.-T. (2009). The A&WMA 2009 Critical Review -- Remote Sensing of Particulate Pollution from Space: Have We Reached the Promised Land? Journal of the Air & Waste Management Association, 59(6), 645-675. doi:10.3155/1047-3289.59.6.645
    Holben, B. N., Holben, T. F., Eck, I., Slutsker, D., Tanré, J. P., Buis, A., . . . Smirnov. (1998). AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sensing of Environment, 66(1), 1-16. Retrieved from http://sfx.lib.ncku.edu.tw:3410/sfxlcl41?sid=google&auinit=BN&aulast=Holben&atitle=AERONET%E2%80%94A%20federated%20instrument%20network%20and%20data%20archive%20for%20aerosol%20characterization&id=doi%3A10.1016%2FS0034-4257%2898%2900031-5&title=Remote%20sensing%20of%20environment&volume=66&issue=1&date=1998&spage=1&issn=0034-4257
    Hooijer, A., Page, S., Canadell, J. G., Silvius, M., Kwadijk, J., Wösten, H., & Jauhiainen, J. (2010). Current and future CO<sub>2</sub> emissions from drained peatlands in Southeast Asia. Biogeosciences, 7(5), 1505-1514. doi:10.5194/bg-7-1505-2010
    Huffman, G., & Huffman. (1997). Estimates of Root-Mean-Square Random Error for Finite Samples of Estimated Precipitation. Journal of applied meteorology, 36(9), 1191-1201. Retrieved from http://sfx.lib.ncku.edu.tw:3410/sfxlcl41?sid=google&auinit=GJ&aulast=Huffman&atitle=Estimates%20of%20root-mean-square%20random%20error%20for%20finite%20samples%20of%20estimated%20precipitation&id=doi%3A10.1175%2F1520-0450%281997%29036%3C1191%3AEORMSR%3E2.0.CO%3B2&title=Journal%20of%20applied%20meteorology&volume=36&issue=9&date=1997&spage=1191&issn=0894-8763
    Huffman, G. J., & Bolvin, D. T. ( 2013). GPCP Version 2.2 SG Combined Precipitation Data Set Documentation: NASA Goddard Space Flight Center, Mesoscale Atmospheric Processes Laboratory and Science Systems and Applications, Inc. .
    Inubushi, K., Furukawa, Y., Hadi, A., Purnomo, E., & Tsuruta, H. (2003). Seasonal changes of CO2, CH4 and N2O fluxes in relation to land-use change in tropical peatlands located in coastal area of South Kalimantan. Chemosphere, 52(3), 603-608. doi:10.1016/s0045-6535(03)00242-x
    IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories.
    IRRI. (2011). IRRI Annual Report 2011. Retrieved from
    Ito, A. (2004). Global estimates of biomass burning emissions based on satellite imagery for the year 2000. Journal of Geophysical Research, 109(D14). doi:10.1029/2003jd004423
    Janetos, A. C., & Justice, C. O. (2010). Land cover and global productivity: A measurement strategy for the NASA programme. International Journal of Remote Sensing, 21(6-7), 1491-1512. doi:10.1080/014311600210281
    Johannes W. Kaiser, Martin G. Schultz, Jean−Marie Grégoire, Christiane Textor, Mikhail Sofiev5, Etienne Bartholomé, . . . Hollingsworth, A. (2006). OBSERVATION REQUIREMENTS FOR GLOBAL BIOMASS BURNING EMISSION MONITORING. Paper presented at the EUMETSAT Meteorological Satellite, Helsinki, Finland.
    Justice, C. O., Justice, J. R. G., Townshend, E. F., Vermote, E., Masuoka, R. E., Wolfe, N., . . . Morisette. (2002). An overview of MODIS Land data processing and product status. Remote Sensing of Environment, 83(1), 3-15. Retrieved from http://sfx.lib.ncku.edu.tw:3410/sfxlcl41?sid=google&auinit=CO&aulast=Justice&atitle=An%20overview%20of%20MODIS%20Land%20data%20processing%20and%20product%20status&id=doi%3A10.1016%2FS0034-4257%2802%2900084-6&title=Remote%20sensing%20of%20environment&volume=83&issue=1&date=2002&spage=3&issn=0034-4257
    Kasischke, N. H. F., French, P., Harrell, N. L., Christensen, S. L., Ustin, D., & Barry. (1993). Monitoring of wildfires in Boreal Forests using large area AVHRR NDVI composite image data. Remote Sensing of Environment, 45(1), 61-71. Retrieved from http://sfx.lib.ncku.edu.tw:3410/sfxlcl41?sid=google&auinit=ES&aulast=Kasischke&atitle=Monitoring%20of%20wildfires%20in%20boreal%20forests%20using%20large%20area%20AVHRR%20NDVI%20composite%20image%20data&id=doi%3A10.1016%2F0034-4257%2893%2990082-9&title=Remote%20sensing%20of%20environment&volume=45&issue=1&date=1993&spage=61&issn=0034-4257
    Kaskaoutis, D. G., Sifakis, N., Retalis, A., & Kambezidis, H. D. (2010). Aerosol Monitoring over Athens Using Satellite and Ground-Based Measurements. Advances in Meteorology, 2010, 1-12. doi:10.1155/2010/147910
    Kaufman, C. J., Tucker, I. Y., & Fung. (1989). Remote sensing of biomass burning in the tropics. Advances in space research, 9(7), 265-268. Retrieved from http://sfx.lib.ncku.edu.tw:3410/sfxlcl41?sid=google&auinit=YJ&aulast=Kaufman&atitle=Remote%20sensing%20of%20biomass%20burning%20in%20the%20tropics&id=doi%3A10.1016%2F0273-1177%2889%2990173-7&title=Advances%20in%20space%20research&volume=9&issue=7&date=1989&spage=265&issn=0273-1177
    Khan, F., Latif, M. T., Juneng, L., Amil, N., Nadzir, M. S., & Syedul Hoque, H. M. (2015). Physicochemical factors and sources of PM at residential- urban environment in Kuala Lumpur. J Air Waste Manag Assoc. doi:10.1080/10962247.2015.1042094
    Kondo, Y. (2004). Impacts of biomass burning in Southeast Asia on ozone and reactive nitrogen over the western Pacific in spring. Journal of Geophysical Research, 109(D15). doi:10.1029/2003jd004203
    Koppmann, R., von Czapiewski, K., & Reid, J. S. (2005). A review of biomass burning emissions, part I: gaseous emissions of carbon monoxide, methane, volatile organic compounds, and nitrogen containing compounds. Atmos. Chem. Phys. Discuss., 5(5), 10455-10516. doi:10.5194/acpd-5-10455-2005
    Koren, I., Remer, L. A., & Longo, K. (2007). Reversal of trend of biomass burning in the Amazon. Geophysical Research Letters, 34(20). doi:10.1029/2007gl031530
    Lalitaporn, P., Kurata, G., Matsuoka, Y., Thongboonchoo, N., & Surapipith, V. (2013). Long-term analysis of NO2, CO, and AOD seasonal variability using satellite observations over Asia and intercomparison with emission inventories and model. Air Quality, Atmosphere & Health, 6(4), 655-672. doi:10.1007/s11869-013-0205-z
    Lamarque, J. F., Bond, V., Eyring, C., Granier, A., Heil, Z., Klimont, D., . . . van, V. (2010). Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmospheric Chemistry and Physics, 10(15), 7017-7039. Retrieved from http://sfx.lib.ncku.edu.tw:3410/sfxlcl41?sid=google&auinit=JF&aulast=Lamarque&atitle=Historical%20%281850%E2%80%932000%29%20gridded%20anthropogenic%20and%20biomass%20burning%20emissions%20of%20reactive%20gases%20and%20aerosols%3A%20methodology%20and%20application&id=doi%3A10.5194%2Facp-10-7017-2010&title=Atmospheric%20chemistry%20and%20physics&volume=10&issue=15&date=2010&spage=7017&issn=1680-7316
    Lambin, E. F., Baulies, X., Bockstael, N., Fischer, G., Krug, T., Leemans, R., . . . C., V. (1999). Land-Use and Land-Cover Change (LUCC) Implementation Strategy. 126.
    Lanorte, A., Danese, M., Lasaponara, R., & Murgante, B. (2013). Multiscale mapping of burn area and severity using multisensor satellite data and spatial autocorrelation analysis. International Journal of Applied Earth Observation and Geoinformation, 20, 42-51. doi:10.1016/j.jag.2011.09.005
    Lin, H.-W., Jin, L., Giglio, J. A., Foley, J. T., & Randerson. (2012). Evaluating greenhouse gas emissions inventories for agricultural burning using satellite observations of active fires. Ecological applications, 22(4), 1345-1364. Retrieved from http://sfx.lib.ncku.edu.tw:3410/sfxlcl41?sid=google&auinit=HW&aulast=Lin&atitle=Evaluating%20greenhouse%20gas%20emissions%20inventories%20for%20agricultural%20burning%20using%20satellite%20observations%20of%20active%20fires&id=doi%3A10.1890%2F10-2362.1&title=Ecological%20applications&volume=22&issue=4&date=2012&spage=1345&issn=1051-0761
    Lyons, W., Lyons, R., & Husar. (1976). SMS/GOES Visible Images Detect a Synoptic-Scale Air Pollution Episode. Monthly weather review, 104(12), 1623-1626. Retrieved from http://sfx.lib.ncku.edu.tw:3410/sfxlcl41?sid=google&auinit=WA&aulast=Lyons&atitle=SMS%2FGOES%20visible%20images%20detect%20a%20synoptic-scale%20air%20pollution%20episode&id=doi%3A10.1175%2F1520-0493%281976%29104%3C1623%3ASVIDAS%3E2.0.CO%3B2&title=Monthly%20weather%20review&volume=104&issue=12&date=1976&spage=1623&issn=0027-0644
    Müller, D., Suess, S., Hoffmann, A. A., & Buchholz, G. (2013). The Value of Satellite-Based Active Fire Data for Monitoring, Reporting and Verification of REDD+ in the Lao PDR. Human Ecology, 41(1), 7-20. doi:10.1007/s10745-013-9565-0
    Marlier, M. E., DeFries, R. S., Voulgarakis, A., Kinney, P. L., Randerson, J. T., Shindell, D. T., . . . Faluvegi, G. (2013). El Nino and health risks from landscape fire emissions in southeast Asia. Nature Clim. Change, 3(2), 131-136. doi:http://www.nature.com/nclimate/journal/v3/n2/abs/nclimate1658.html#supplementary-information
    Matsui, H., Koike, M., Kondo, Y., Takegawa, N., Kita, K., Miyazaki, Y., . . . Zhu, T. (2009). Spatial and temporal variations of aerosols around Beijing in summer 2006: Model evaluation and source apportionment. Journal of Geophysical Research, 114. doi:10.1029/2008jd010906
    Menon, S., Hansen, J., Nazarenko, L., & Luo, Y. (2002). Climate effects of black carbon aerosols in China and India. Science, 297(5590), 2250-2253. Retrieved from http://sfx.lib.ncku.edu.tw:3410/sfxlcl41?sid=google&auinit=S&aulast=Menon&atitle=Climate%20effects%20of%20black%20carbon%20aerosols%20in%20China%20and%20India&id=pmid%3A12351786
    Miettinen, J., Shi, C., & Liew, S. C. (2011). Deforestation rates in insular Southeast Asia between 2000 and 2010. Global Change Biology, 17(7), 2261-2270. doi:10.1111/j.1365-2486.2011.02398.x
    Mieville, A., Granier, C., Liousse, C., Guillaume, B., Mouillot, F., Lamarque, J. F., . . . Pétron, G. (2010). Emissions of gases and particles from biomass burning during the 20th century using satellite data and an historical reconstruction. Atmospheric Environment, 44(11), 1469-1477. doi:10.1016/j.atmosenv.2010.01.011
    Miyamoto, M. (2006). Forest conversion to rubber around Sumatran villages in Indonesia: Comparing the impacts of road construction, transmigration projects and population. Forest Policy and Economics, 9(1), 1-12. doi:10.1016/j.forpol.2005.01.003
    Monn, C., & Monn. (1999). Cytotoxicity and Induction of Proinflammatory Cytokines from Human Monocytes Exposed to Fine (PM2.5) and Coarse Particles (PM10–2.5) in Outdoor and Indoor Air. Toxicology and applied pharmacology, 155(3), 245-252. Retrieved from http://sfx.lib.ncku.edu.tw:3410/sfxlcl41?sid=google&auinit=C&aulast=Monn&atitle=Cytotoxicity%20and%20induction%20of%20proinflammatory%20cytokines%20from%20human%20monocytes%20exposed%20to%20fine%20%28PM%202.5%29%20and%20coarse%20particles%20%28PM%2010%E2%80%932.5%29%20in%20outdoor%20and%20indoor%20air&id=doi%3A10.1006%2Ftaap.1998.8591&title=Toxicology%20and%20applied%20pharmacology&volume=155&issue=3&date=1999&spage=245&issn=0041-008X
    Mouillot, F., Schultz, M. G., Yue, C., Cadule, P., Tansey, K., Ciais, P., & Chuvieco, E. (2014). Ten years of global burned area products from spaceborne remote sensing—A review: Analysis of user needs and recommendations for future developments. International Journal of Applied Earth Observation and Geoinformation, 26, 64-79. doi:10.1016/j.jag.2013.05.014
    Murdiyarso, D., Hergoualc'h, K., & Verchot, L. V. (2010). Opportunities for reducing greenhouse gas emissions in tropical peatlands. Proc Natl Acad Sci U S A, 107(46), 19655-19660. doi:10.1073/pnas.0911966107
    NASA. (2012). MCD12Q1_user_guide.pdf.
    NOAA. (2015). Retrieved from http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml
    Page, S. E., Rieley, J. O., Shotyk, W., & Weiss, D. (1999). Interdependence of peat and vegetation in a tropical peat swamp forest. Philosophical transactions - Royal Society. Biological sciences, 354(1391), 1885-1897. Retrieved from http://sfx.lib.ncku.edu.tw:3410/sfxlcl41?sid=google&auinit=SE&aulast=Page&atitle=Interdependence%20of%20peat%20and%20vegetation%20in%20a%20tropical%20peat%20swamp%20forest&id=pmid%3A11605630
    Page, S. E., Siegert, F., Rieley, J. O., Boehm, H.-D. V., Jaya, A., & Limin, S. (2002). The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 420(6911), 61-65. Retrieved from http://dx.doi.org/10.1038/nature01131
    Paul A. Hubanks, Michale D. King, Steven A. Platnick, & Pincus, R. A. (2008). MODIS Atmosphere L3 Gridded Product Algorithm Theoretical Basis Document.
    Permadi, D. A., & Kim Oanh, N. T. (2013). Assessment of biomass open burning emissions in Indonesia and potential climate forcing impact. Atmospheric Environment, 78, 250-258. doi:10.1016/j.atmosenv.2012.10.016
    Pope, C. A., Dockery, D. W., & Schwartz, J. (1995). Review of epidemiological evidence of health effects of particulate air pollution. Inhalation toxicology, 7(1), 1-18.
    Pope Iii, C. A., Pope, M., Ezzati, D., & Dockery. (2009). Fine-Particulate Air Pollution and Life Expectancy in the United States. The New England journal of medicine, 360(4), 376-386. Retrieved from http://sfx.lib.ncku.edu.tw:3410/sfxlcl41?sid=google&auinit=CA&aulast=Pope%20III&atitle=Fine-particulate%20air%20pollution%20and%20life%20expectancy%20in%20the%20United%20States&id=doi%3A10.1056%2FNEJMsa0805646&title=The%20New%20England%20journal%20of%20medicine&volume=360&issue=4&date=2009&spage=376&issn=0028-4793
    Prasannakumar, V., Vijith, H., Charutha, R., & Geetha, N. (2011). Spatio-Temporal Clustering of Road Accidents: GIS Based Analysis and Assessment. Procedia - Social and Behavioral Sciences, 21, 317-325. doi:10.1016/j.sbspro.2011.07.020
    Rajeev, K., Ramanathan, V., & Meywerk, J. (2000). Regional aerosol distribution and its long-range transport over the Indian Ocean. Journal of Geophysical Research, 105(D2), 2029. doi:10.1029/1999jd900414
    Ramdani, F., & Hino, M. (2013). Land use changes and GHG emissions from tropical forest conversion by oil palm plantations in Riau Province, Indonesia. PLoS One, 8(7), e70323. doi:10.1371/journal.pone.0070323
    Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M., & Morton, D. C. (2012). Global burned area and biomass burning emissions from small fires. Journal of Geophysical Research, 117(G4). doi:10.1029/2012jg002128
    Reddington, C. L., Yoshioka, M., Balasubramanian, R., Ridley, D., Toh, Y. Y., Arnold, S. R., & Spracklen, D. V. (2014). Contribution of vegetation and peat fires to particulate air pollution in Southeast Asia. Environmental Research Letters, 9(9), 094006. doi:10.1088/1748-9326/9/9/094006
    Reid, J. S., Hyer, E. J., Johnson, R. S., Holben, B. N., Yokelson, R. J., Zhang, J., . . . Liew, S. C. (2013). Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program. Atmospheric Research, 122, 403-468. doi:10.1016/j.atmosres.2012.06.005
    Reisen, F., Meyer, C. P., & Keywood, M. D. (2013). Impact of biomass burning sources on seasonal aerosol air quality. Atmospheric Environment, 67, 437-447. doi:10.1016/j.atmosenv.2012.11.004
    Rotstayn, L., Rotstayn, U., & Lohmann. (2002). Tropical Rainfall Trends and the Indirect Aerosol Effect. Journal of Climate, 15(15), 2103-2116. Retrieved from http://sfx.lib.ncku.edu.tw:3410/sfxlcl41?sid=google&auinit=LD&aulast=Rotstayn&atitle=Tropical%20rainfall%20trends%20and%20the%20indirect%20aerosol%20effect&id=doi%3A10.1175%2F1520-0442%282002%29015%3C2103%3ATRTATI%3E2.0.CO%3B2&title=Journal%20of%20Climate&volume=15&issue=15&date=2002&spage=2103&issn=0894-8755
    Roy, D. P. (1999). Multi-temporal active-fire based burn scar detection algorithm. International Journal of Remote Sensing, 20(5), 1031-1038. doi:10.1080/014311699213073
    Roy, D. P., Jin, Y., Lewis, P. E., & Justice, C. O. (2005). Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sensing of Environment, 97(2), 137-162. doi:10.1016/j.rse.2005.04.007
    Ruiz, J., Lázaro, J., Cano, I., & Leal, P. (2014). Burned Area Mapping in the North American Boreal Forest Using Terra-MODIS LTDR (2001–2011): A Comparison with the MCD45A1, MCD64A1 and BA GEOLAND-2 Products. Remote Sensing, 6(1), 815-840. doi:10.3390/rs6010815
    Santoso, M., Dwiana Lestiani, D., & Hopke, P. K. (2013). Atmospheric black carbon in PM2.5in Indonesian cities. Journal of the Air & Waste Management Association, 63(9), 1022-1025. doi:10.1080/10962247.2013.804465
    Seiler, W., & Crutzen, P. (1980). Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climatic Change, 2(3), 207-247. doi:10.1007/BF00137988
    Seinfeld, J. H., & Pandis, S. N. (2012). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change: Wiley.
    Shi, Y., & Yamaguchi, Y. (2014). A high-resolution and multi-year emissions inventory for biomass burning in Southeast Asia during 2001–2010. Atmospheric Environment, 98, 8-16. doi:10.1016/j.atmosenv.2014.08.050
    Simorangkir, D. (2006). Fire use: Is it really the cheaper land preparation method for large-scale plantations? Mitigation and Adaptation Strategies for Global Change, 12(1), 147-164. doi:10.1007/s11027-006-9049-2
    Stolle, F., Chomitz, K. M., Lambin, E. F., & Tomich, T. P. (2003). Land use and vegetation fires in Jambi Province, Sumatra, Indonesia. Forest Ecology and Management, 179(1-3), 277-292. doi:10.1016/s0378-1127(02)00547-9
    Stott, P. (1986). The Spatial Pattern of Dry Season Fires in the Savanna Forests of Thailand. Journal of Biogeography, 13(4), 345. doi:citeulike-article-id:10205948
    doi: 10.2307/2845018
    Streets, D. G., Yarber, K. F., Woo, J. H., & Carmichael, G. R. (2003). Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles, 17(4), n/a-n/a. doi:10.1029/2003gb002040
    TaiwanEPA. (2013). Open burning. Retrieved from http://oldweb.epa.gov.tw/Html/4b70dee6-02cd-44d7-a0c9-731a1a25ce87_zh-tw.html
    Tansey, K., Beston, J., Hoscilo, A., Page, S. E., & Paredes Hernández, C. U. (2008). Relationship between MODIS fire hot spot count and burned area in a degraded tropical peat swamp forest in Central Kalimantan, Indonesia. Journal of Geophysical Research, 113(D23). doi:10.1029/2008jd010717
    Tipayarom, D., & Oanh, N. T. K. (2007). Effects from Open Rice Straw Burning Emission on Air Quality in the Bangkok Metropolitan Region. ScienceAsia, 33(3), 339. doi:10.2306/scienceasia1513-1874.2007.33.339
    Tong Zhu, Megan L. Melamed, David Parrish, Michael Gauss, Laura Gallardo Klenner, Mark Lawrence, . . . Cathy Liousse. (2012). WMOIGAC Impacts of Megacities on Air Pollution and Climate: World Meteorological Organization (WMO).
    Tosca, M. G., Randerson, J. T., Zender, C. S., Nelson, D. L., Diner, D. J., & Logan, J. A. (2011). Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia. Journal of Geophysical Research, 116(D8). doi:10.1029/2010jd015148
    Tsai, T.-C., Jeng, Y.-J., Chu, D. A., Chen, J.-P., & Chang, S.-C. (2011). Analysis of the relationship between MODIS aerosol optical depth and particulate matter from 2006 to 2008. Atmospheric Environment, 45(27), 4777-4788. doi:10.1016/j.atmosenv.2009.10.006
    USEPA. (2009). Integrated Science Assessment for Particulate Matter (EPA/600/R-08/139F). Retrieved from
    van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., & Arellano Jr, A. F. (2006). Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys., 6(11), 3423-3441. doi:10.5194/acp-6-3423-2006
    van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., . . . van Leeuwen, T. T. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 10(23), 11707-11735. doi:10.5194/acp-10-11707-2010
    Velasco, E., & Rastan, S. (2015). Air quality in Singapore during the 2013 smoke-haze episode over the Strait of Malacca: Lessons learned. Sustainable Cities and Society, 17, 122-131. doi:10.1016/j.scs.2015.04.006
    Venkataraman, C., Habib, G., Kadamba, D., Shrivastava, M., Leon, J. F., Crouzille, B., . . . Streets, D. G. (2006). Emissions from open biomass burning in India: Integrating the inventory approach with high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) active-fire and land cover data. Global Biogeochemical Cycles, 20(2), n/a-n/a. doi:10.1029/2005gb002547
    Wharton, C. H. (1996). Man, fire, and wild cattle in north Cambodia Proceedings of the 5th annual tall timbers fire ecology conference (pp. 23–65). Tallahassee.
    Whitby, K., & Whitby. (1978). The physical characteristics of sulfur aerosols. Atmospheric Environment, 12(1), 135-159. Retrieved from http://sfx.lib.ncku.edu.tw:3410/sfxlcl41?sid=google&auinit=KT&aulast=Whitby&atitle=The%20physical%20characteristics%20of%20sulfur%20aerosols&id=doi%3A10.1016%2F0004-6981%2878%2990196-8&title=Atmospheric%20environment&volume=12&issue=1&date=1978&spage=135&issn=0004-6981
    WI. (2014). Retrieved from http://www.wetlands.org/Whatarewetlands/Peatlands/tabid/2737/Default.aspx
    Yang, X., & Lo, C. P. (2010). Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia metropolitan area. International Journal of Remote Sensing, 23(9), 1775-1798. doi:10.1080/01431160110075802
    Yokelson, R. J., Karl, P., Artaxo, D. R., Blake, T. J., Christian, D. W. T., Griffith, A., . . . Hao. (2007). The Tropical Forest and Fire Emissions Experiment: overview and airborne fire emission factor measurements. Atmospheric Chemistry and Physics, 7(19), 5175-5196. Retrieved from http://sfx.lib.ncku.edu.tw:3410/sfxlcl41?sid=google&auinit=RJ&aulast=Yokelson&atitle=The%20Tropical%20Forest%20and%20Fire%20Emissions%20Experiment%3A%20overview%20and%20airborne%20fire%20emission%20factor%20measurements&id=doi%3A10.5194%2Facp-7-5175-2007&title=Atmospheric%20chemistry%20and%20physics&volume=7&issue=19&date=2007&spage=5175&issn=1680-7316
    Zhu, J., Liu, D., & Zeng, Q. (2011). Analysis of the Aerosol Optical Depth and the Air Quality in Qingdao, China. Journal of Software, 6(7). doi:10.4304/jsw.6.7.1194-1200
    Ziegler, A. D., Fox, J. M., Webb, E. L., Padoch, C., Leisz, S. J., Cramb, R. A., . . . Vien, T. D. (2011). Recognizing contemporary roles of swidden agriculture in transforming landscapes of southeast Asia. Conserv Biol, 25(4), 846-848. doi:10.1111/j.1523-1739.2011.01664.x

    下載圖示 校內:2020-09-01公開
    校外:2020-09-01公開
    QR CODE