| 研究生: |
侯佳成 Hou, Chia-Cheng |
|---|---|
| 論文名稱: |
探討與Rad9有交互作用蛋白之研究 Study on the proteins that interact with Rad9 |
| 指導教授: |
張敏政
Chang, Ming-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 細胞凋亡 、免疫沈澱 |
| 外文關鍵詞: | MDM2, Rad9, p53 |
| 相關次數: | 點閱:130 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類Rad9 (全名:Human homologue of Schizosaccharomyces pombe Rad9 )是一各在演化上具有高度保留性的蛋白質,而且在好幾種生物功能上也扮演著很重要的角色,包括促進對任何DNA傷害物質的抵抗性,傳遞細胞週期的一各檢查哨(checkpoint),誘導細胞的凋亡以及穩定基因體的完整性特別在未遭受DNA傷害物質的物種中,也具有保持基因體的完整性.由於Rad9調節許多細胞逆境的反應,其中包含了細胞的凋亡.同時,Rad9也被認為在功能上與p53極為相似.另外,對於MDM2在生物體中基本上扮演著一個負向調控者的角色.然而過去的文獻中指出,MDM2在經過DNA傷害物質的刺激下,其在細胞中的位置會有所改變.過去的科學家認為這應該與細胞中p53促使細胞凋亡有關.因此,我們想研究Rad9在細胞凋亡上所扮演的角色是否與MDM2有牽連.在我們的研究中,我們提供了一些數據證明了Rad9能夠與MDM2進行交互的作用,無論在於試管外的實驗(in vitro)亦或是在細胞活體中的實驗.首先,我們利用了共同免疫沈澱的方式指示出Rad9與MDM2呈現出專一性的交互作用,無論是利用外源性的MDM2-GFP偵測內生性的Rad9,或者是利用外源性的Flag-Rad9來偵測內生性的MDM2.再來,試管外的實驗利用Gst-MDM2與細胞內的Rad9進行雜和反應,也暗示出Rad9能夠與MDM2進行交互作用,而其餘的負對照組均無偵測出Rad9.這也再次呼應著Rad9與MDM2的交互作用是呈現著專一性.過去的文獻報導出在Rad的Nter範圍中具有一段與BH3相似的結構,而且文獻也指出此段結構能夠賦予Rad9受到DNA物質傷害後能具有進行細胞凋亡的功能.再加上我們之前證明出Rad9能與MDM2進行交互作用,這促使我們想研究是否Rad9與MDM2的機作用參與著細胞凋亡的過程.實驗結果顯示在三株不同的細胞中(MCF-7、A549、U2OS)MDM2與Rad9的交互作用在紫外光照射後早期均有增加的趨勢,隨著時間延續MDM2消失後,伴隨著則是Rad9與Bcl-XL的交互作用.另外,在免疫螢光染色(immunofluroscence)實驗中也發現到Rad9能夠與MDM2交互在Bcl-XL蛋白分佈於細胞中的位置,包含細胞核膜以及細胞質中,同時在核質分離的過程中也指出Rad9與MDM2在經過紫外光早期照射下於細胞核中交互作用有增加,另外在晚期則一起慢慢轉送到細胞質中,接著MDM2在細胞質的消失後,接踵而來的便是Rad9與Bcl-XL的交互作用.最後,我們利用MDM2-GFP過度表現與核糖核酸干擾的技術都證明了Rad9與Bcl-XL的交互作用確實能被MDM影響的.上述的結果證明了Rad9誘導的細胞凋亡中,MDM2則牽涉其中當作一個負調節者.額外的,我們也發現了Rad9過度表現的情況下,會造成MDM2蛋白表現的減少.這使我們研究是否p53的調節會被Rad9的表現多寡有所影響.從簡單的Rad9過度表現以及Rad9核糖核酸干擾的實驗中也暗示著在經過紫外光的照射下,p532的累積與後修飾作用都可能因為Rad9蛋白的表現不一而有所影響.引此,綜合上述所有的結果,我們認為Rad9與MDM2的交互作用可能能為細胞凋亡帶來新穎的機轉.
The human Rad9 (Human homologue of Schizosaccharomyces pombe Rad9) is an evolutionarily conserved protein and plays important roles in several fundamental biological processes, including promotion of resistance to DNA damage, acting as a pro-apoptotic element. The proteins encoded by human and mouse Rad9 contain a BH3-like domain, typical of BH3-only, pro-apoptotic family members. Investigations with the hRad9 BH3 demonstrated the ability to bind anti-apoptotic proteins Bcl-2 and Bcl-XL. Overexpression of hRAD9 in a variety of human cell lines induced apoptosis, but partial deletion of the BH3 domain neutralized this pro-apoptotic activity. Several models have been proposed to explain how hRad9 functions as a mediator of programmed cell death. Evidence showed that DNA damage leads to cleavage of hRad9 by caspase 3. Interestingly the cleavage of hRad9 by caspase 3 is thought to disrupt the Rad9-Rad1-Hus1 complex, thus interfering with cell cycle checkpoint control and promoting apoptosis. The DNA damage-induced phosphorylation of hRad9 by the protein kinase c-Abl is important forbinding of hRad9 to Bcl-XL while phosporylation by protein kinase Cδ (PKCδ) enhances the association of hRad9 and Bcl-2. However, the mechanism of Rad9-mediated apoptosis needed to be addressed. Previous reports suggested that Rad9 could translocate from nucleus to cytosol during early apoptotic condition. Besides, MDM2, which plays an important negative regulater in mutiple-functions, appeared to translocate to the same site that Rad9 locates under apoptotic condition. In this study, we provide evidences that Rad9 can interact with MDM2 by cell-based assay and in vitro GST pull-down assay. At first, co-immunoprecipitation experiments indicated that the specific interaction between exogenous GFP-MDM2 and endogenous Rad9 occurred in 293T cell line. Second, pull-down assays demonstrated that purified GST-MDM2, but not GST alone could interact with endogenous Rad9 prepared from cell lysate of A549 cell line. It was reported that N-terminal of Rad9 has BH3(Bcl-2 homology domain3)-like region and the Rad9 plays a role involving in regulating apoptosis in HeLa cell line that were suffered form DNA damage. Therefore, the Rad9-MDM2 association was also investigated following U.V irradiation. The result showed that the levels of MDM2-Rad9 complex was enhanced at 2hr post-irradiation of MCF-7 cell line by U.V irradiation. On the other hand, the association of Rad9 with Bcl-XL could not be detected in A549 cell lines without U.V irradiation, and the complex of Rad9-Bcl-XL was detected after 4hr post-irradiation. By immuno-fluorescence method, we observed that both Rad9 and MDM2 localize at nucleolus in A549 cell line before UV irradiation; however, most of these two proteins were trans-located into peri-nuclear membrane at 12hr post-irradiation. Final, our preliminary data indicated the binding ability of Rad9 to Bcl-XL was enhanced in A549 cell line pre-treated with MDM2 RNAi, extensively irradiate by U.V. However, the mechanism is still poorly understood. On the other hand, we found that Rad9 over-expression appears to down-regulate MDM2 protein level and promotes p53 post-translational modification after U.V treatment, especially the phosphorylation of p53s46. According to our results, we suggest that the proteins that interact with Rad9 are supposed to regulate Rad9-mediated apotposis, and the role of Rad9 under high U.V energy may provide a novel mechanism for cell programma death.
1. Barak Y, Juven T, Haffner R, Oren M. mdm2 expression is induced by wild type p53 activity. EMBO J., 12, 461-8 1993
2. Bao S, Lu T, Wang X, Zheng H, Wang LE, Wei Q, Hittelman WN, Li L. Disruption of the Rad9/Rad1/Hus1 (9-1-1) complex leads to checkpoint signaling and replication defects. Oncogene.., 23, 5586-93 2004
3. Blankley RT, Lydall D. A domain of Rad9 specifically required for activation of Chk1 in budding yeast. J Cell Sci., 117, 601-8 2004
4. Cheng CK, Chow LW, Loo WT, Chan TK, Chan V.The cell cycle checkpoint gene Rad9 is a novel oncogene activated by 11q13 amplification and DNA methylation in breast cancer. Cancer Res. 65, 8646-54 2005
5. Christopher E.Helt, Wensheng Wang, Peter C. Keng, Robert A. Bambara. Evidence that DNA Damage Detection Machinery Participates in DNA Repair. Cell Cycle 4, 529-532;2005
6. D. A. Freedman, L. Wu† and A. J. Levine. Functions of the MDM2 oncoprotein. CMLS, Cell. Mol. Life Sci. 55 96–107;1999
7. D'Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S, Gostissa M, Coen S, Marchetti A, Del Sal G, Piaggio G, Fanciulli M, Appella E, Soddu S. Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis.
Nat Cell Biol.,4, 11-9 2000
8. Edgardo R. Parrilla-Castellar , Sonnet J.H. Arlander , Larry Karnitz. Dial 9–1–1 for DNA damage: the Rad9–Hus1–Rad1 (9–1–1) clamp complex. DNA Repair 3, 1009–1014;2004
Erhardt P, Tomaselli KJ, Cooper GM. Identification of the MDM2 oncoprotein as a substrate for CPP32-like apoptotic proteases. J Biol Chem., 272, 15049-52 1997
10. Fakharzadeh SS, Trusko SP, George DL. Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J., 10, 1565-9 1991
11. Ganguli G, Wasylyk B. p53-independent functions of MDM2. Mol Cancer Res., 1, 027-35 2003
12. Griffith JD, Lindsey-Boltz LA, Sancar A. Structures of the human Rad17-replication factor C and checkpoint Rad 9-1-1 complexes visualized by glycerol spray/low voltage microscopy. J Biol Chem, 277, 15233-6 2002
13. Howard B. Lieberman. Rad9, an Evolutionarily Conserved Gene With Multiple Functions for Preserving Genomic Integrity. Journal of Cellular Biochemistry 97:690–697 (2006)
14. Itaru Hirai and Hong-Gang Wang. A Role of the C-terminal Region of Human Rad9 (hRad9) in Nuclear Transport of the hRad9 Checkpoint Complex. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 277, 25722–25727, 2002
15. Kai M, Wang TS. Checkpoint responses to replication stalling: inducing tolerance and preventing mutagenesis. Mutat Res., 532, 59-73 2003
16. Kevin M. Hopkins,Wojtek Auerbach, Xiang Yuan Wang, M. Prakash Hande, Haiying Hang, Debra J. Wolgemuth, Alexandra L. Joyner,and Howard B. Lieberman1. Deletion of Mouse Rad9 Causes Abnormal Cellular Responses to DNA Damage, Genomic Instability, and Embryonic Lethality. MOLECULAR AND CELLULAR BIOLOGY, 7235–7248;2004
17. Kiyotsugu Yoshida, Kiyoshi Komatsu, Hong-Gang Wang, and Donald Kufe. c-Abl Tyrosine Kinase Regulates the Human Rad9 Checkpoint Protein in Response to DNA Damage. MOLECULAR AND CELLULAR BIOLOGY, 3292–3300, 2002
18. Komatsu K, Miyashita T, Hang H, Hopkins KM, Zheng W, Cuddeback S, Yamada M, Lieberman HB, Wang HG.Human homologue of S. pombe Rad9 interacts with BCL-2/BCL-xL and promotes apoptosis. Nat Cell Biol, 2, 1-6 2000.
19. Komatsu K, Hopkins KM, Lieberman HB, Wang H. Schizosaccharomyces pombe Rad9 contains a BH3-like region and interacts with the anti-apoptotic protein Bcl-2. FEBS Lett. 481, 122-6 2000
20. Ladanyi M, Wang S, Niesvizky R, Feiner H, Michaeli J. Proto-oncogene analysis in multiple myeloma. Am J Pathol., 141, 949-53 1992
21. Lee MW, Hirai I, Wang HG.Caspase-3-mediated cleavage of Rad9 during apoptosis. Oncogene. 22, 6340-6 2003
22. Maniwa Y, Yoshimura M, Bermudez VP, Okada K, Kanomata N, Ohbayashi C, Nishimura Y, Hayashi Y, Hurwitz J, Okita Y.His239Arg SNP of hRAD9 is associated with lung adenocarcinoma. Cancer, 106, 1117-22 2006
23. Marechal V, Elenbaas B, Piette J, Nicolas JC, Levine AJ. The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Mol Cell Biol.,14, 7414-20 1994
24. Maniwa Y, Yoshimura M, Bermudez VP, Yuki T, Okada K, Kanomata N, Ohbayashi C, Hayashi Y, Hurwitz J, Okita Y. Accumulation of hRad9 protein in the nuclei of nonsmall cell lung carcinoma cells. Cancer. 103, 126-32 2005.
25. Ming-Jiu Chen, Yi-Tzu Lin, Howard B. Lieberman, Gang Chen, and Eva Y.-H. P. Lee. ATM-dependent Phosphorylation of Human Rad9 Is Required for Ionizing Radiation-induced Checkpoint Activation. THE JOURNAL OF BIOLOGICAL CHEMISTRY 276, 16580–16586, 2001
26. Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell., 69, 1237-45 1992
27. Nasrin Mesaeli and Clark Phillipson. Impaired p53 Expression, Function, and Nuclear Localization in Calreticulin-deficient Cells. Molecular Biology of the Cell., 15, 1862–1870, 2004
28. Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T, Nishimori H, Tamai K, Tokino T, Nakamura Y, Taya Y. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell.,102, 849-62 2000
29. Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature., 358, :80-3 1992
30. Pia Roos-Mattjus, Kevin M. Hopkins, Andrea J. Oestreich, Benjamin T. Vroman,Kenneth L. Johnson, Stephen Naylor, Howard B. Lieberman, and Larry M. Karnitzd. Phosphorylation of Human Rad9 Is Required for Genotoxin-activated Checkpoint Signaling. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 278, 24428–24437, 2003
31. Prakash L. Repair of pyrimidine dimers in radiation-sensitive mutants rad3, rad4, rad6 and rad9 of Saccharomyces cerevisiae. Mutat Res. 45, 13-20 1977
32. Ribeiro JC, Barnetson AR, Jackson P, Ow K, Links M, Russell PJ. Caffeine-increased radiosensitivity is not dependent on a loss of G2/M arrest or apoptosis in bladder cancer cell lines. Int J Radiat Biol., 75, 481-92 1999
33. Robert P. St.Onge, Blair D. A. Besley, Jennifer L. Pelley, and Scott Davey. A Role for the Phosphorylation of hRad9 in Checkpoint Signaling. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 278, 26620–26628, 2003
34. Robert P. St.Onge, Blair D. A. Besley, Minwoo Park, Richard Casselman, and Scott Davey. DNA Damage-dependent and -independent Phosphorylation of the hRad9 Checkpoint Protein. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 276, 41898–41905, 2001
35. Roth J, Dobbelstein M, Freedman DA, Shenk T, Levine AJ. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J., 17, 554-64 1998
36. Sanchez Y, Bachant J, Wang H, Hu F, Liu D, Tetzlaff M, Elledge SJ. Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms.
Science. , 286, 1166-71 1999
37. Slichenmyer WJ, Nelson WG, Slebos RJ, Kastan MB. Loss of a p53-associated G1 checkpoint does not decrease cell survival following DNA damage. Cancer Res.53, 4164-8, 1993
38. Sorensen CS, Syljuasen RG, Lukas J, Bartek J. ATR, Claspin and the Rad9-Rad1-Hus1 complex regulate Chk1 and Cdc25A in the absence of DNA damage.
Cell Cycle., 3, 941-5 2004
39. St Onge RP, Besley BD, Park M, Casselman R, Davey S. DNA damage-dependent and -independent phosphorylation of the hRad9 checkpoint protein. J Biol Chem. 276:41898-905, 2001
40. Terleth C, Schenk P, Poot R, Brouwer J, van de Putte P. Differential repair of UV damage in rad mutants of Saccharomyces cerevisiae: a possible function of G2 arrest upon UV irradiation. Mol Cell Biol, 10, 4678-84 1990
41. Tongyun Dang, Shideng Bao and Xiao-Fan Wang. Human Rad9 is required for the activation of S-phase checkpoint and the maintenance of chromosomal stability. Genes to Cells, 10, 287–295;2005
42. Toueille M, El-Andaloussi N, Frouin I, Freire R, Funk D, Shevelev I, Friedrich-Heineken E, Villani G, Hottiger MO, Hubscher U. The human Rad9/Rad1/Hus1 damage sensor clamp interacts with DNA polymerase beta and increases its DNA substrate utilisation efficiency: implications for DNA repair. Nucleic Acids Res. 11:3316-24, 2004
43. Valeria Di Stefanoa, Marina Mattiussia, Ada Sacchia, Gabriella D_Orazi. HIPK2 inhibits both MDM2 gene and protein by, respectively,p53-dependent and independent regulations. FEBS Letters 579 5473–5480;2005
44. Wang W, Brandt P, Rossi ML, Lindsey-Boltz L, Podust V, Fanning E, Sancar A, Bambara RA. The human Rad9-Rad1-Hus1 checkpoint complex stimulates flap endonuclease 1. Proc Natl Acad Sci U S A. , 101, 16762-7 2004
45. Wang W, Brandt P, Rossi ML, Lindsey-Boltz L, Podust V, Fanning E, Sancar A, Bambara RA. The human Rad9-Rad1-Hus1 checkpoint complex stimulates flap endonuclease 1. Proc Natl Acad Sci U S A. 48:16762-7, 2004
46. Weiss RS, Enoch T, Leder P. Inactivation of mouse Hus1 results in genomic instability and impaired responses to genotoxic stress. Genes Dev.,14, 1886-98 2000
47. White JH, Lusnak K, Fogel S. Mismatch-specific post-meiotic segregation frequency in yeast suggests a heteroduplex recombination intermediate. Nature, 315, 350-2 1985
48. Wu X, Bayle JH, Olson D, Levine AJ. The p53-mdm-2 autoregulatory feedback loop. Genes Dev., 7, 1126-32. 1993
49. Xiaoming Wu1, Steven M Shell1 and Yue Zou, Interaction and colocalization of Rad9/Rad1/Hus1 checkpoint complex
with replication protein A in human cells. Oncogene, 1–8, 2005
50. Yoshida K, Komatsu K, Wang HG, Kufe D.c-Abl tyrosine kinase regulates the human Rad9 checkpoint protein in response to DNA damage. Mol Cell Biol. 22, :3292-300 2002
51. Yoshida K, Wang HG, Miki Y, Kufe D.Protein kinase Cdelta is responsible for constitutive and DNA damage-induced phosphorylation of Rad9. EMBO J. 22, 1431-41 2003
52. Yuxin Yin, Aiping Zhu, Yan J. Jin, Yu-Xin Liu, Xia Zhang, Kevin M. Hopkins, and Howard B. Lieberman. Human RAD9 checkpoint control_proapoptotic protein can activate transcription of p21. PNAS 101 8864–8869; 2004