| 研究生: |
陳翠屏 Chen, Tsui-Ping |
|---|---|
| 論文名稱: |
重力場模型對慣性導航技術之影響 The Impact of Gravity on Inertial Navigation System Technology |
| 指導教授: |
江凱偉
Chiang, Kai-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 慣性導航系統 、重力場模型 、重力異常 、重力擾動 |
| 外文關鍵詞: | inertial navigation system, gravity model, gravity anomaly, gravity disturbance |
| 相關次數: | 點閱:104 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在導航定位問題中,都和地球幾何形狀、重力場參數相關,尤其在導航定位過程中,地球重力加速度不可忽略。在過去慣性導航初發展的階段,微機電慣性測量感測器系統誤差之影響遠大於重力異常,所以重力異常對此類低成本慣性感測器之定位精度沒有太大影響,但是,當較高等級的慣性測量儀之感測器系統誤差小於重力異常,重力異常對慣性導航精度就有影響。目前幾乎所有慣性導航計算中所採用的地球重力場都不是當地的實際重力值,而是使用正常重力計算得到的正常重力值,都只是實際重力的近似表示。隨著慣性測量儀精度的提升,若用正常重力代替實際重力進行慣性導航系統計算,重力場誤差將成為一項突出的定位誤差源。
隨著慣性導航技術發展和應用領域的擴大,對地球重力場有更高的要求,由此可見,要進一步提高慣性導航成果的精度,必須在導航位置估算時考慮重力的影響。本研究透過模擬器模擬不同方向的重力異常對慣性導航定位誤差的影響,找出加速度等級和重力場的關係。
Navigation and positioning problems are related to geometry of the Earth and parameters of gravity field. The initial stage of development of the inertial navigation system, because of accelerometer error is much larger than the Earth's gravity error; we usually ignore the impact of the gravity error. Currently, almost all inertial navigation calculations using normal gravity, which is calculated from normal gravity model, just only approximate representation of the actual gravity. With the accuracy improvement of the inertial measurement unit (IMU), the gravitational error became prominent positioning error sources, if we use normal gravity instead of the actual gravity to calculate carrier’s velocity and attitude.
Due to the development of inertial navigation technology and the expansion of application fields, we need more accurate Earth's gravity model. To further improve the accuracy of the inertial system, we must consider the influence of gravity in the navigation position estimation. Through simulation, the gravity anomaly in inertial navigation we added to identify the impact of INS accuracy; find the relationship between acceleration level and gravity field.
李佩珊,“台灣大地起伏模型之精進及其在DEM 製作之應用”,國立交通大學碩士論文,(2005)
邱俊榮,“INS/GPS 空載重力測量之研究─以直接求差法估計重力”,國立成功大學測量工程學系碩士論文,(2002)
高豫麒,“結合Seasat、Geosat、ERS-1、TOPEX/POSEIDON 衛星測高資料計算全球海洋重力異常”,國立交通大學碩士論文,(1997)
Dorobantu, R. and Gerlach, C.(2004), “Investigation of a Navigation-Grade RLG SIMU type iNAV-RQH”, IAPG/FESG, (16), ISSN 1437-8280, ISBN 3-934205-15-1.
Grewal, M.S., Weill, L.R. and Andrews, A.P.(2001), Global Positioning Systems, Inertial Navigation, and Integration(1st ed.), Wiley-Interscience.
Heiskanen, W.A. and Moritz, H.(1997), Physical geodesy, Springer Verlag.
Hwang, C.(1998), “Inverse Vening Meinesz formula and deflection-geoid formula: applications to the predictions of gravity and geoid over the South China Sea”, J. Geodesy, (72), pp.304-312.
Ihde, J., Schirmer, U., Stefani, F. and Toppe, F.(1998), “Geoid modeling with point masses”, Proceedings of the Second continental Workshop on the Geoid in Europe, Budapest, March, pp.199-204.
Jekeli, C.(2004), “Cold Atom Interferometer as Inertial Measurement Unit for Precision Navigation”, Laboratory for Space Geodesy and Remote Sensing Research Ohio State University.
Neil M. Barbour(2010), “Inertial Navigation Sensors”, Charles Stark Draper Laboratory (P-4994)Cambridge, USA.
Schwarz, D.(2000), “A System for Data-Driven Concatenative Sound Synthesis. In Digital Audio Effects”, Verona, Italy, pp.97-102.
Shin, E.H.(2001), “Accuracy Improvement of Low Cost INS/GPS for Land Applications”, Department of Geomatics Engineering, University of Calgary, Calgary, Canada.
Torge, W.(1991),:Geodesy(2nd ed.), Walter de Gruyter: Berlin-New York.
Vermeer, M.(1995), “Mass point geopotential modelling using fast spectral techniques; historical overview, toolbox description, numerical experiment,” Manuscripta geodaetica, 20 ( 5) pp.362 – 378.
Wei, M. and Schwarz, K.P.(1990), “A strapdown inertial algorithm using an earth-fixed Cartesian frame”, Navigation(ISSN 0028-1522), (37), pp.153-167.