簡易檢索 / 詳目顯示

研究生: 鄭文勝
Cheng, Wen-Sheng
論文名稱: 利用順滑模態控制之球與球系統穩定化
Stablization of a Ball on Sphere System Using Sliding Mode Control
指導教授: 何明字
Ho, Ming-Tzu
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 173
中文關鍵詞: 非線性系統順滑模態控制強健控制
外文關鍵詞: Nonlinear system, Sliding mode control, Robust control
相關次數: 點閱:123下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 系統建模的不精確對控制系統的穩定性有很大的影響。強健控制理論為專門應付系統不確定性的重要方法之一,而順滑模態控制為強健控制理論中重要的一環。在本論文中,吾人考慮一個「球與球系統」的控制問題。此系統透過兩個直流馬達帶動大球做二自由度的滾動,其中以影像感測器感測小球在大球上之位置,而大球之位置則由馬達的旋轉角度推估而得,使小球能立在大球上達到平衡。此為先天非線性、不穩定且欠致動性的系統,而這個控制問題將是一件具挑戰性的任務。於論文中,吾人將球與球系統於平衡點附近解耦合成兩軸獨立的球與輪系統,利用順滑模態控制理論設計控制器達成閉迴路系統穩定之目的,並透過模擬與實驗結果來驗證此控制系統之可行性。

    The inaccuracies in modeling of a physical system can lead to poor performance or even instability of the resulting control system. Robust control is one of the most important approaches to deal with model uncertainty, and sliding mode control is one of them. In this thesis, we consider the control design problem of a system, called the ball and sphere system. This system consists of two dc motors and a image sensor. The overhead image sensor is use to measure the displacement of the small ball on the top of the sphere. Two dc motors drive a big sphere to roll in two directions so that the small ball can be kept staying on the top of the sphere. The position of the sphere can be derived by the angle of rotation of the motor. This system is inherently nonlinear, unstable, and underactuated. The control of this system is a challenging task. In this thesis, we show that around the equilibrium point of the system can be decoupled into two independent ball and wheel systems. Based on sliding mode control, a controller is designed to achieve the closed-loop stability of the system. The simulation and experimental results are given to demonstrate and validate the effectiveness of the control scheme.

    摘要 Ⅰ Abstract Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 表目錄 Ⅶ 圖目錄 Ⅷ 第一章 緒論 1-1研究背景及動機 1-1 1-2研究目的 1-1 1-3 研究步驟 1-3 1-4 相關文獻探討 1-5 1-5 論文結構 1-6 第二章 影像視覺系統 2-1前言 2-1 2-2針孔成像模型 2-1 2-3相機內部參數估測 2-4 2-4數位影像處理簡介 2-16 2-5 物體偵測流程規劃 2-17 2-6 CMOS Image Sensor 2-18 2-7 FPGA內部規劃模組 2-21 2-7-1 I2C通訊協定介面 2-21 2-7-2 SRAM儲存介面 2-25 2-7-3 RS232通訊協定介面 2-27 2-8 影像處理演算法 2-29 2-8-1 影像二值化 2-30 2-8-2 重心計算演算法 2-31 第三章 球與球系統模型 3-1 前言 3-1 3-2 球與球系統數學模型建立 3-1 3-3永磁式直流馬達數學模型建立 3-10 3-4球與球系統結合永磁式直流馬達之整體數學模型 3-15 3-5球與球系統機構設計 3-19 3-6外部硬體電路介紹 3-25 第四章 LQR平衡控制器設計與模擬結果 4-1 前言 4-1 4-2 LQR控制理論 4-2 4-3 LQR平衡控制器設計與模擬 4-4 第五章 順滑模態平衡控制器設計與模擬結果 5-1 前言 5-1 5-2 順滑模態介紹 5-1 5-3傳統順滑模態控制設計方法 5-4 5-4非線性系統順滑模態控制設計方法 5-8 5-5非線性系統順滑模態平衡控制器設計與模擬 5-13 5-6平衡控制器之模擬結果比較 5-38 第六章 實驗結果 6-1 前言 6-1 6-2 LQR控制器實驗結果 6-2 6-3 非線性系統順滑模態控制器實驗結果 6-10 6-4 實驗結論 6-19 第七章 結論與未來展望 7-1 結論 7-1 7-2 未來展望 7-1 參考文獻 附錄 自述

    [1] 劉士源,「以回授線性化與順滑模態控制之球與球系統的平衡控制」,國立成功大學工程科學系碩士論文,民國九十八年七月。
    [2] T. B. Lauwers, G. A. Kantor, and R. L. Hollis, “A Dynamically Stable Single-Wheeled Mobile Robot with Inverse Mouse-Ball Drive,” Proceedings of 2006 IEEE International Conference on Robotics and Automation, pp. 2884-2889, 2006.
    [3] M. A. Aizerman and F. R. Gantmarkher, “On Some Features of Switchings in Nonlinear Control with a Piecewise-Smooth Response of The Nonlinear Element,” Avmatika I Telemekhanika, 188, 11, 1957.
    [4] V. I. Utkin, “Variable Structure Systems with Sliding Mode,’’ IEEE Transactions on Automatic Control, Vol. 39, pp. 1466-1470, 1977.
    [5] V. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electromechanical System, CRC Press, Boca Raton, 1999.
    [6] V. I. Utkin, Sliding Modes in Optimization and Control, Springer-Verlag, New York, 1992.
    [7] J. L. Martin, A. Zuloaga, C. Cuadrado, J. Lazaro, and U. Bidarte, “Hardware Implementation of Optical Flow Constraint Equation Using FPGAs,” Computer Vision and Image Understanding, Vol. 98, pp. 462-490, 2005.
    [8] J. Diaz, E. Ros, F. Pelayo, E. M. Ortigosa, and S. Mota, “FPGA-Based Real-Time Optical-Flow System,” IEEE Transactions Circuits and Systems for Video Technology, Vol. 16, No. 2, pp. 274-279, 2006.
    [9] C. T. Huitzil and M. A. Estrada, “Real-Time Image Processing with a Compact FPGA-Based Systolic Architecture,” Real-Time Imaging, Vol. 10, pp. 177-187, 2004.
    [10] J. Batlle, J. Marti, P. Ridao, and J. Amat, “A New FPGA/DSP-Based Parallel Architecture for Real-Time Image Processing,” Real-Time Imaging, Vol. 8, pp. 345-356, 2002.
    [11] D. R. Lee, S. H. Jin, P. C. Thien, and J. W. Jeon, “FPGA Based Connected Component Labeling,” Proceedings of IEEE International Conference on Control, Automation and Systems, pp. 2313-2317, 2007.
    [12] University Reultingen-Balancer System Ball on Ball web site, http://vvl.fh-reutlingen.de/cocoon/my/vvl/vvl?lang=en&goto_page=P_DEMO_BALLONBALL&open=1 .
    [13] 楊志偉,「以視覺伺服為基礎之倒單擺系統平衡控制」,國立成功大學工程科學系碩士論文,民國九十四年七月。
    [14] 呂俊明,「球與輪系統之平衡控制」,國立成功大學工程科學系碩士論文,民國九十二年七月。
    [15] 林浩軒,「利用全狀態回授線性化的球與輪系統之平衡控制」,國立成功大學工程科學系碩士論文,民國九十五年七月。
    [16] 呂育勝,「利用順滑模態之的球與弧系統的平衡控制」,國立成功大學工程科學系碩士論文,民國九十七年一月。
    [17] 廖顯慶,「利用倒階設計方法於球與板系統的追蹤平衡控制」,國立成功大學工程科學系碩士論文,民國九十五年七月。
    [18] 朱立銘,「以視覺伺服為基礎之球與板系統追蹤平衡控制」,國立成功大學工程科學系碩士論文,民國九十八年一月。
    [19] O. Faugeras, Three-Dimensional Computer Vision: A Geometric Viewpoint, Massachusetts Institute of Technology, Cambridge, 1993.
    [20] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry, An Invitation to 3-D Vision: From Images to Geometric Models, Springer, New York, 2004.
    [21] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University, Cambridge, 2003.
    [22] J. E. Slotine and W. Li, Applied Nonlinear Control, Englewood Cliffs, 1991.
    [23] B. C. Kuo, Automatic Control Systems, Prentice-Hall International Editions, Upper Saddle River, NJ, 1997.
    [24] H. K. Khalil, Nonlinear System, Prentice Hall, Upper Saddle River, 1996.
    [25] J. Hauser, S. Sastry, and P. Kokotovic, “Nonlinear Control via Approximate Input-Output Linearization: The Ball and Beam Example,” IEEE Transactions on Automatic Control, Vol. 37, No. 3, pp. 392-398, 1992.
    [26] D. Cho, Y. Kato, and D. Spilman, “Sliding Mode and Classical Controllers in Magnetic Levitation Systems,” IEEE Control Systems Magazine, Vol. 13, No. 1, pp. 42-48, 1993.
    [27] M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and Adaptive Control Design, John Wiley & Sons, New York, 1995.
    [28] R. W. Brockett, “Feedback Invariants for Nonlinear Systems,” Proceedings of IFAC Congress, Helsinki, pp. 1115-1120, 1978.
    [29] B. Jakubczyk and W. Respondek, “On Linearization of Control Systems,” Bull. Acad. Pol. Sci. ser. Sci. Math. Astr. Phys, Vol. 28, pp. 517-522, 1980.
    [30] A. Isidori, Nonlinear Control Systems, Springer, London, 1995.
    [31] H. Nijmeijer and A. J. van der Schaft, Nonlinear Dynamical Control Systems, Springer-Verlag, New York, 1990.
    [32] R. Marino and P. Tomei, Nonlinear Control Design: Geometric, Adaptive and Robust, Prentice Hall, London, 1995.
    [33] D. Voytsekhovsky and R. M. Hirschorn, “Stabilization of Single-Input Nonlinear Systems Using Higher-Order Term Compensating Sliding Mode Control,” International Journal of Robust and Nonlinear Control, Vol. 18, pp. 468-480, 2008.
    [34] M. T. Ho and J. M. Lu, “H∞ PID Controller Design for Lur’e Systems and Its Application to a Ball and Wheel Apparatus,” International Journal of Control, Vol. 78, No. 1, pp. 53-64, 2005.
    [35] J. H. Ginsberg, Advanced Engineering Dynamics, Cambridge University Press, 1995.
    [36] J. Koiller and K. Ehlers, “Rubber Rolling Over a Sphere,” Regular and Chaotic Dynamics, Vol. 12, No. 2, pp. 127-152, 2007.
    [37] S. H. Friedberg, A. J. Insel, and L. E. Spence, Linear Algebra, Pearson Education, NJ, 2003.
    [38] 簡彰億,「以DSP為基礎於複雜背景中之視覺引導全向移動機器人之研製」,國立成功大學工程科學系碩士論文,民國九十九年七月。

    下載圖示 校內:2016-09-05公開
    校外:2018-01-01公開
    QR CODE