簡易檢索 / 詳目顯示

研究生: 薛皖心
Hsueh, Wan-Hsin
論文名稱: 針對口腔致病菌具核梭桿菌建立臨床及基礎研究之平台
The oral pathogen Fusobacterium nucleatum: Establishment of a platform for clinical and basic research
指導教授: 陳振暐
Chen, Jenn-Wei
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 75
中文關鍵詞: 具核梭桿菌口腔鱗狀細胞癌轉座子突變株細菌庫
外文關鍵詞: F. nucleatum, oral squamous cell carcinoma, transposon mutant library
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 據統計,全球大約有百分之二十的癌症病例與感染性因子相關。其中存在於人類腸道及口腔中的格蘭氏陰性厭氧菌具核梭桿菌 (Fusobacterium nucleatum) 被認為可以促進大腸直腸癌的發展。此外,具核梭桿菌是一種由共生菌轉變而成的牙周致病菌,可通過其表面蛋白附著其他細菌,如牙齦卟啉單胞菌(Porphyromonas gingivalis),而形成牙菌斑。 在最近的研究中,透過唾液DNA定序發現了具核梭桿菌的數量與口腔鱗狀細胞癌(OSCC)有關,然而具核梭桿菌是否參與口腔鱗狀細胞癌的發展仍是一個未知的問題。因此,本研究旨在探討具核梭桿菌與口腔上皮細胞之間的相互作用,以及建立基因編輯工具以鑑定具核梭桿菌的潛在致病因子。我們分別從口腔鱗狀細胞癌唾液和非口腔鱗狀細胞癌唾液中分離了11和15株梭桿菌門之菌株。兩組菌株均未發現明顯促進細胞增殖之作用,而口腔鱗狀細胞癌唾液分離之菌株表現出更高的細胞侵襲能力。同時,我們也建立了含有10000個突變體菌株的Tn5轉座子突變株細菌庫和一個構建特定基因刪除之突變株的單基因刪除系統。我們用1920個具核梭桿菌突變株進行了與牙齦卟啉單胞菌共凝集的分析,以篩選可能參與其相互作用的基因,並通過定序鑑定了來自共凝集缺陷型突變株的10個基因。總而言之,本研究揭示了具核梭桿菌參與口腔鱗狀細胞癌的潛在能力,並建立了用於具核梭桿菌研究的基因組規模篩選的工具。

    It has been estimated that infectious agents are implicated in approximately 20% of the global cancer burden. The Gram-negative anaerobe Fusobacterium nucleatum (F. nucleatum), exists in both gut and oral cavity, has been suggested to facilitate the development of colorectal cancer (CRC). In addition, F. nucleatum is a commensal-turned periodontal pathogen that can attach to other bacteria such as Porphyromonas gingivalis (P. gingivalis) through its surface proteins to form dental plaque. Recently a link was found between F. nucleatum abundance and oral squamous cell carcinoma (OSCC) through sequencing of salivary DNA. However, whether F. nucleatum is involved in the development of OSCC is still unknown. Hence, the present study aimed to investigate the bacterial-host interaction between F. nucleatum and oral epithelial cell as well as establishing genetic tools to identify novel virulence factors of F. nucleatum. We isolated 11 and 15 fusobacterial strains from OSCC saliva and non-OSCC saliva, respectively. No significant promotion of cell proliferation was found in both groups, while OSCC strains showed higher ability in cell invasion. Meanwhile, a Tn5 transposon mutant library containing 10000 mutant clones and a single-gene deletion system to construct deletion mutants of specific genes has been established. Coaggregation assay including F. nucleatum and P. gingivalis was performed among 1920 mutant clones to screen for genes that might be involved in the inter-species interaction, and 10 genes from the coaggregation-defective mutants have been identified by sequencing. In summary, the present study reveals a potential characteristic of which F. nucleatum participate in OSCC, and establishes tools for a genome-scale screening in F. nucelatum research.

    中文摘要 I ABSTRACT II 致謝 III CONTENTS IV ABBREVIATION VIII CHAPTER I 1 INTRODUCTION 1 1.1 F. nucleatum 1 1.2 Pathogenesis of F. nucleatum 1 1.3 Adhesins of F. nucleatum 2 1.4 Carcinogenesis mechanism of F. nucleatum in colorectal cancer 4 1.5 F. nucleatum and oral squamous cell carcinoma 6 1.6 F. nucleatum genetic systems 7 1.7 Rationale 8 CHAPTER II 9 MATERIALS AND METHODS 9 2.1 Bacterial strains and cell lines 9 2.2 Bacterial culture 9 2.2.1 Fusobacterium spp. 10 2.2.2 Porphyromonas gingivalis 10 2.2.3 Escherichia coli 10 2.2.4 Staphylococcus aureus 10 2.3 Cell culture 10 2.3.1 HCT116 11 2.3.2 SG 11 2.3.3 SCC15 11 2.4 Isolation of Fusobacterium spp. from saliva samples 12 2.5 Cell proliferation assay 13 2.5.1 Seeding 13 2.5.2 Bacteria preparation 13 2.5.3 Co-culture of cell and bacteria 13 2.6 Association and invasion assay 14 2.6.1 Association assay 14 2.6.2 Invasion assay 14 2.6.3 Inhibition 15 2.7 Preparation of F. nucleatum competent cell for electroporation 15 2.8 Electroporation of F. nucleatum 15 2.9 Tn5 transposon mutagenesis of F. nucleatum 16 2.9.1 Transposome mixture preparation 16 2.9.2 Establishment of transposon mutant library 16 2.10 Mapping of Tn5 insertion site 16 2.11 Coaggregation assay 17 2.11.1 Quantification 17 2.11.2 Inhibition 17 2.11.3 Screening 18 2.12 Growth curve of F. nucleatum 18 2.13 Extraction of DNA from bacterial culture 19 2.14 Extraction of plasmid from bacterial culture 19 2.15 E. coli competent cell preparation 19 2.16 Transformation of plasmid into E. coli 20 2.17 Polymerase chain reaction (PCR) primers 20 2.18 General PCR steps 20 2.19 PCR product purification 21 2.20 Agarose gel electrophoresis 22 2.21 Restriction enzyme digestion 22 2.22 DNA ligation 22 2.23 Development of single-gene deletion mutant of F. nucleatum 22 2.24 Development of complement strain 23 2.25 Statistical analysis 24 CHAPTER III 25 RESULTS 25 3.1 Isolation of F. nucleatum from human saliva samples 25 3.2 Co-culture of F. nucleatum with CRC and human gingival epithelioid (SG) cell show no promotion in cell proliferation. 26 3.3 F. nucleatum ATCC 23726 invades oral epithelial cell 26 3.4 F. nucleatum clinical isolates from OSCC patients showed a trend of higher invasion ability 27 3.5 Small molecules showed inhibition of F. nucleatum invasion in HCT116, but not in oral epithelial cell 28 3.6 A Tn5 mutant library of F. nucleatum ATCC 23726 was established by transposon mutagenesis. 28 3.7 Screening of transposon mutants defective in coaggregation with P. gingivalis 30 3.8 Three genes were selected for further characterization 31 3.9 An in-frame gene-deletion system was established to carry out single-gene deletion mutant of F. nucleatum. 32 3.10 Deletion of FN0766 does not affect the coaggregation between F. nucleatum and P. gingivalis. 33 CHAPTER IV 34 DISCUSSION 34 REFERENCES 40 TABLES 49 Table 1. Clinical Fusobacterial strains isolated from human saliva samples 49 Table 2. Blasting result of coaggregation-defect transposon mutant 51 Table 3. Oligonucleotide primers used in this study 52 FIGURES 54 Figure 1. Isolation of F. nucleatum from saliva samples 54 Figure 2. F. nucleatum was not able to promote cell proliferation. 55 Figure 3. Association and invasion of F. nucleatum ATCC 23726 56 Figure 4. F. nucleatum ATCC 23726 does not replicate in both SG and SCC15 cells. 57 Figure 5. Intracellular bacteria of F. nucleatum ATCC 23726 type strain and clinical isolates. 58 Figure 6. Inhibition of F. nucleatum ATCC 23726 cell invasion in the presence of inhibitors (10mM). 59 Figure 7. Insertion of the transposon and site mapping were confirmed by catP PCR and SOS-PCR for sequencing 60 Figure 8. Coaggregation of F. nucleatum and P. gingivalis. 61 Figure 9. Ten F. nucleatum Tn5 mutants showed coaggregation defect with P. gingivalis. 62 Figure 10. Growth curve of coaggregation-defective transposon mutants 63 Figure 11. Target gene deletion in F. nucleatm ATCC 23726 ∆galK 64 Figure 12. F. nucleatum ATCC 23726 ∆radD was defective in coaggregation with S. aureus. 66 Figure 13. Coaggregation of F. nucleatum ∆FN0766 and P. gingivalis. 67 SUPPLEMENTARY MATERIAL 68 A. Chemicals and reagents 68 B. Bacteria culture medium 70 C. Buffers 71 SUPPLEMENTARY FIGURES 73 Supplementary figure 1. Schematic of single-primer one-step PCR (SOS-PCR) 73 Supplementary figure 2. Growth curves of F. nucleatum coaggregation-defective mutants 74 Supplementary figure 3. Cell survival under anerobic condition 75

    [1] Nie S, Tian B, Wang X, Pincus DH, Welker M, Gilhuley K, Lu X, Han YW, Tang YW. Fusobacterium nucleatum subspecies identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 53(4):1399-402 (2015).
    [2] Bolstad AI, Jensen HB, Bakken V. Taxonomy, biology, and periodontal aspects of Fusobacterium nucleatum. Clin Microbiol Rev 9(1):55-71 (1996).
    [3] Aagaard K, Riehle K, Ma J, Segata N, Mistretta TA, Coarfa C, Raza S, Rosenbaum S, Van den Veyver I, Milosavljevic A. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLOS ONE 7(6):e36466 (2012).
    [4] Segata N, Haake SK, Mannon P, Lemon KP, Waldron L, Gevers D, Huttenhower C, Izard J. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol 13(6):R42 (2012).
    [5] Han YW, Wang X. Mobile microbiome: oral bacteria in extra-oral infections and inflammation. J Dent Res 92(6):485-91 (2013).
    [6] Moore WE, Moore LV. The bacteria of periodontal diseases. Periodontol 2000 (5):66-77 (1994).
    [7] Saygun I, Nizam N, Keskiner I, Bal V, Kubar A, Açıkel C, Serdar M, Slots J. Salivary infectious agents and periodontal disease status. J Periodontal Res 46(2):235-9 (2011).
    [8] Han YW, Shen T, Chung P, Buhimschi IA, Buhimschi CS. Uncultivated bacteria as etiologic agents of intra-amniotic inflammation leading to preterm birth. J Clin Microbiol 47(1):38-47 (2009).
    [9] Warren RL, Freeman DJ, Pleasance S, Watson P, Moore RA, Cochrane K, Allen-Vercoe E, Holt RA. Co-occurrence of anaerobic bacteria in colorectal carcinomas. Microbiome 1(1):16 (2013).
    [10] Sparks Stein P, Steffen MJ, Smith C, Jicha G, Ebersole JL, Abner E, Dawson D, 3rd. Serum antibodies to periodontal pathogens are a risk factor for Alzheimer's disease. Alzheimers Dement 8(3):196-203 (2012).
    [11] Brennan CA, Garrett WS. Fusobacterium nucleatum - symbiont, opportunist and oncobacterium. Nat Rev Microbiol 17(3):156-166 (2019).
    [12] Kolenbrander PE, London J. Adhere today, here tomorrow: oral bacterial adherence. J Bacteriol 175(11):3247-52 (1993).
    [13] Palmer RJ, Jr., Gordon SM, Cisar JO, Kolenbrander PE. Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. J Bacteriol 185(11):3400-9 (2003).
    [14] Ruhl S, Sandberg AL, Cisar JO. Salivary receptors for the proline-rich protein-binding and lectin-like adhesins of oral actinomyces and streptococci. J Dent Res 83(6):505-10 (2004).
    [15] Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ, Jr. Communication among oral bacteria. Microbiol Mol Biol Rev 66(3):486-505, table of contents (2002).
    [16] Kolenbrander PE, Andersen RN, Moore LV. Coaggregation of Fusobacterium nucleatum, Selenomonas flueggei, Selenomonas infelix, Selenomonas noxia, and Selenomonas sputigena with strains from 11 genera of oral bacteria. Infect Immun 57(10):3194-203 (1989).
    [17] Diaz PI, Hoare A, Hong BY. Subgingival microbiome shifts and community dynamics in periodontal diseases. J Calif Dent Assoc 44(7):421-35 (2016).
    [18] Hong B-Y, Furtado Araujo MV, Strausbaugh LD, Terzi E, Ioannidou E, Diaz PI. Microbiome profiles in periodontitis in relation to host and disease characteristics. PLoS One 10(5):e0127077 (2015).
    [19] Babu JP, Dean JW, Pabst MJ. Attachment of Fusobacterium nucleatum to fibronectin immobilized on gingival epithelial cells or glass coverslips. J Periodontol 66(4):285-90 (1995).
    [20] Ozaki M, Miyake Y, Shirakawa M, Takemoto T, Okamoto H, Suginaka H. Binding specificity of Fusobacterium nucleatum to human erythrocytes, polymorphonuclear leukocytes, fibroblasts, and HeLa cells. J Periodontal Res 25(3):129-34 (1990).
    [21] Winkler JR, John SR, Kramer RH, Hoover CI, Murray PA. Attachment of oral bacteria to a basement-membrane-like matrix and to purified matrix proteins. Infect Immun 55(11):2721-6 (1987).
    [22] Han YW, Shi W, Huang GT, Kinder Haake S, Park NH, Kuramitsu H, Genco RJ. Interactions between periodontal bacteria and human oral epithelial cells: Fusobacterium nucleatum adheres to and invades epithelial cells. Infect Immun 68(6):3140-6 (2000).
    [23] Jabra-Rizk MA, Falkler WA, Jr., Merz WG, Kelley JI, Baqui AA, Meiller TF. Coaggregation of Candida dubliniensis with Fusobacterium nucleatum. J Clin Microbiol 37(5):1464-8 (1999).
    [24] Tavares LJ, Klein MI, Panariello BHD, Dorigatti de Avila E, Pavarina AC. An in vitro model of Fusobacterium nucleatum and Porphyromonas gingivalis in single- and dual-species biofilms. J Periodontal Implant Sci 48(1):12-21 2018).
    [25] Park J, Shokeen B, Haake SK, Lux R. Characterization of Fusobacterium nucleatum ATCC 23726 adhesins involved in strain-specific attachment to Porphyromonas gingivalis. International Journal Of Oral Science;8:138 (2016).
    [26] Kaplan CW, Lux R, Haake SK, Shi W. The Fusobacterium nucleatum outer membrane protein RadD is an arginine-inhibitable adhesin required for inter-species adherence and the structured architecture of multispecies biofilm. Mol Microbiol 71(1):35-47 (2009).
    [27] Coppenhagen-Glazer S, Sol A, Abed J, Naor R, Zhang X, Han YW, Bachrach G. Fap2 of Fusobacterium nucleatum is a galactose-inhibitable adhesin involved in coaggregation, cell adhesion, and preterm birth. Infect Immun 83(3):1104-13 (2015).
    [28] Han YW, Ikegami A, Rajanna C, Kawsar HI, Zhou Y, Li M, Sojar HT, Genco RJ, Kuramitsu HK, Deng CX. Identification and characterization of a novel adhesin unique to oral fusobacteria. J. Bacteriol. Res. 187(15):5330-5340 (2005).
    [29] Xu M, Yamada M, Li M, Liu H, Chen SG, Han YW. FadA from Fusobacterium nucleatum utilizes both secreted and nonsecreted forms for functional oligomerization for attachment and invasion of host cells. J BIOL CHEM 282(34):25000-25009 (2007).
    [30] Edwards AM, Grossman TJ, Rudney JD. Fusobacterium nucleatum transports noninvasive Streptococcus cristatus into human epithelial cells. Infect Immun 74(1):654-62 (2006).
    [31] Fardini Y, Wang X, Témoin S, Nithianantham S, Lee D, Shoham M, Han YW. Fusobacterium nucleatum adhesin FadA binds vascular endothelial cadherin and alters endothelial integrity. Mol Microbiol 82(6):1468-80 (2011).
    [32] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin 65(1):5-29 (2015).
    [33] Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G and others. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A 108 Suppl 1(Suppl 1):4586-91 (2011).
    [34] Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O'Sullivan O and others. Gut microbiota composition correlates with diet and health in the elderly. Nature 488(7410):178-84 (2012).
    [35] Garrett WS. Cancer and the microbiota. Science 348(6230):80-6 (2015).
    [36] Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science 336(6086):1268-73 (2012).
    [37] Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12(10):661-72 (2014).
    [38] Chen W, Liu F, Ling Z, Tong X, Xiang C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One 7(6):e39743 (2012).
    [39] Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, Barnes R, Watson P, Allen-Vercoe E, Moore RA and others. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 22(2):299-306 (2012).
    [40] Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Ojesina AI, Jung J, Bass AJ, Tabernero J and others. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22(2):292-8 (2012).
    [41] Mima K, Nishihara R, Qian ZR, Cao Y, Sukawa Y, Nowak JA, Yang J, Dou R, Masugi Y, Song M and others. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 65(12):1973-80 (2016).
    [42] Yang Y, Weng W, Peng J, Hong L, Yang L, Toiyama Y, Gao R, Liu M, Yin M, Pan C and others. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating Toll-like receptor 4 signaling to nuclear factor-κb, and up-regulating expression of microRNA-21. Gastroenterology 152(4):851-66 (2017).
    [43] Fardini Y, Wang X, Témoin S, Nithianantham S, Lee D, Shoham M, Han YW. Fusobacterium nucleatum adhesin FadA binds vascular endothelial cadherin and alters endothelial integrity. Mol. Microbiol. 82(6):1468-80 (2011).
    [44] Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 14(2):195-206 (2013).
    [45] Quah SY, Bergenholtz G, Tan KS. Fusobacterium nucleatum induces cytokine production through Toll-like-receptor-independent mechanism. Int Endod J 47(6):550-9 (2014).
    [46] Dharmani P, Strauss J, Ambrose C, Allen-Vercoe E, Chadee K. Fusobacterium nucleatum infection of colonic cells stimulates MUC2 mucin and tumor necrosis factor alpha. Infect Immun 79(7):2597-607 (2011).
    [47] Jiang WG, Mansel RE. E-cadherin complex and its abnormalities in human breast cancer. Surg. Oncol 9(4):151-71 (2000).
    [48] Jiang WG, Sanders AJ, Katoh M, Ungefroren H, Gieseler F, Prince M, Thompson SK, Zollo M, Spano D, Dhawan P and others. Tissue invasion and metastasis: Molecular, biological and clinical perspectives. Sem Cancer Biol 35:S244-S275 (2015).
    [49] Abed J, Emgård JE, Zamir G, Faroja M, Almogy G, Grenov A, Sol A, Naor R, Pikarsky E, Atlan KA and others. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe 20(2):215-25 (2016).
    [50] Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, Enk J, Bar-On Y, Stanietsky-Kaynan N, Coppenhagen-Glazer S and others. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42(2):344-55 (2015).
    [51] Mima K, Sukawa Y, Nishihara R, Qian ZR, Yamauchi M, Inamura K, Kim SA, Masuda A, Nowak JA, Nosho K and others. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol 1(5):653-61 (2015).
    [52] Shenker BJ, Datar S. Fusobacterium nucleatum inhibits human T-cell activation by arresting cells in the mid-G1 phase of the cell cycle. Infect Immun 63(12):4830-6 (1995).
    [53] Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, Clancy TE, Chung DC, Lochhead P, Hold GL and others. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14(2):207-15 (2013).
    [54] Sun HL, Zhou X, Xue YF, Wang K, Shen YF, Mao JJ, Guo HF, Miao ZN. Increased frequency and clinical significance of myeloid-derived suppressor cells in human colorectal carcinoma. World J Gastroenterol 18(25):3303-9 (2012).
    [55] Zhang L, Liu Y, Zheng HJ, Zhang CP. The oral microbiota may have influence on oral cancer. Front Cell Infect Microbiol 9:476 (2019).
    [56] Nagy KN, Sonkodi I, Szöke I, Nagy E, Newman HN. The microflora associated with human oral carcinomas. Oral Oncology 34(4):304-8 (1998).
    [57] Al-hebshi NN, Nasher AT, Maryoud MY, Homeida HE, Chen T, Idris AM, Johnson NW. Inflammatory bacteriome featuring Fusobacterium nucleatum and Pseudomonas aeruginosa identified in association with oral squamous cell carcinoma. Sci Rep 7(1):1834 (2017).
    [58] Schmidt BL, Kuczynski J, Bhattacharya A, Huey B, Corby PM, Queiroz ELS, Nightingale K, Kerr AR, DeLacure MD, Veeramachaneni R and others. Changes in abundance of oral microbiota associated with oral cancer. PLos One 9(6):e98741 (2014).
    [59] Binder Gallimidi A, Fischman S, Revach B, Bulvik R, Maliutina A, Rubinstein AM, Nussbaum G, Elkin M. Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget 6(26):22613-23 (2015).
    [60] Komiya Y, Shimomura Y, Higurashi T, Sugi Y, Arimoto J, Umezawa S, Uchiyama S, Matsumoto M, Nakajima A. Patients with colorectal cancer have identical strains of Fusobacterium nucleatum in their colorectal cancer and oral cavity. Gut 68(7):1335 (2019).
    [61] Kinder Haake S, Yoder S, Gerardo SH. Efficient gene transfer and targeted mutagenesis in Fusobacterium nucleatum. Plasmid 55(1):27-38 (2006).
    [62] Nakagaki H, Sekine S, Terao Y, Toe M, Tanaka M, Ito HO, Kawabata S, Shizukuishi S, Fujihashi K, Kataoka K. Fusobacterium nucleatum envelope protein FomA is immunogenic and binds to the salivary statherin-derived peptide. Infect Immun 78(3):1185-92 (2010).
    [63] Bhattacharyya S, Ghosh SK, Shokeen B, Eapan B, Lux R, Kiselar J, Nithianantham S, Young A, Pandiyan P, McCormick TS and others. FAD-I, a Fusobacterium nucleatum cell wall-associated diacylated lipoprotein that mediates human beta defensin 2 induction through Toll-like receptor-1/2 (TLR-1/2) and TLR-2/6. Infect Immun 84(5):1446-1456 (2016).
    [64] Berg D, Howe M, Ajioka J. Mobile DNA: American Society for Microbiology Washington. DC; 1989.
    [65] Goryshin IY, Reznikoff WS. Tn5 in vitro transposition. J Biol Chem 273(13):7367-74 (1998).
    [66] Goryshin IY, Jendrisak J, Hoffman LM, Meis R, Reznikoff WS. Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nat Biotechnol 18(1):97-100 (2000).
    [67] Wu C, Al Mamun AAM, Luong TT, Hu B, Gu J, Lee JH, D’Amore M, Das A, Ton-That H. Forward genetic dissection of biofilm development by Fusobacterium nucleatum: Novel functions of cell division proteins FtsX and EnvC. mBio 9(2) (2018).
    [68] Hsiao J-R, Chang C-C, Lee W-T, Huang C-C, Ou C-Y, Tsai S-T, Chen K-C, Huang J-S, Wong T-Y, Lai Y-H and others. The interplay between oral microbiome, lifestyle factors and genetic polymorphisms in the risk of oral squamous cell carcinoma. Carcinogenesis 39(6):778-87 (2018).
    [69] Nagano Y, Watabe M, Porter KG, Coulter WA, Millar BC, Elborn JS, Goldsmith CE, Rooney PJ, Loughrey A, Moore JE. Development of a genus-specific PCR assay for the molecular detection, confirmation and identification of Fusobacterium spp. Br. J. Biomed. Sci. 64(2):74-7 (2007).
    [70] Casasanta MA, Yoo CC, Udayasuryan B, Sanders BE, Umaña A, Zhang Y, Peng H, Duncan AJ, Wang Y, Li L and others. Fusobacterium nucleatum host-cell binding and invasion induces IL-8 and CXCL1 secretion that drives colorectal cancer cell migration. Science Signaling 13(641): eaba9157 (2020).
    [71] Cameron DE, Urbach JM, Mekalanos JJ. A defined transposon mutant library and its use in identifying motility genes in Vibrio cholerae. Proc Natl Acad Sci U S A 105(25):8736-41 (2008).
    [72] Held K, Ramage E, Jacobs M, Gallagher L, Manoil C. Sequence-verified two-allele transposon mutant library for Pseudomonas aeruginosa PAO1. J Bacteriol 194(23):6387-9 (2012).
    [73] Liu H, Bouillaut L, Sonenshein AL, Melville SB. Use of a mariner-based transposon mutagenesis system to isolate Clostridium perfringens mutants deficient in gliding motility. J Bacteriol 195(3):629-36 (2013).
    [74] Salama NR, Manoil C. Seeking completeness in bacterial mutant hunts. Curr Opin Microbiol 9(3):307-11 (2006).
    [75] Noguchi N, Noiri Y, Narimatsu M, Ebisu S. Identification and localization of extraradicular biofilm-forming bacteria associated with refractory endodontic pathogens. Appl Environ Microbiol 71(12):8738-43 (2005).
    [76] Kolenbrander PE, Andersen RN. Inhibition of coaggregation between Fusobacterium nucleatum and Porphyromonas (Bacteroides) gingivalis by lactose and related sugars. Infect Immun 57(10):3204-9 (1989).
    [77] Munshi, Raafat Mohammed. The association between Fusobacterium nucleatum outer membrane vesicles and colonic cancer. Trinity College Dublin.School of Medicine.CLINICAL MEDICINE, (2017)
    [78] Kim JH, Lee J, Park J, Gho YS. Gram-negative and Gram-positive bacterial extracellular vesicles. Semin Cell Dev Biol 40:97-104 (2015).
    [79] Mashburn LM, Whiteley M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437(7057):422-5 (2005).
    [80] Kremer BH, van der Kraan M, Crowley PJ, Hamilton IR, Brady LJ, Bleiweis AS. Characterization of the sat operon in Streptococcus mutans: evidence for a role of Ffh in acid tolerance. J Bacteriol 183(8):2543-52 (2001).
    [81] Ajouz B, Berrier C, Garrigues A, Besnard M, Ghazi A. Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of Escherichia coli cells. J Biol Chem 273(41):26670-4 (1998).
    [82] Sukharev SI, Blount P, Martinac B, Kung C. Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Annu Rev Physiol 59:633-57 (1997).
    [83] Calos MP, Miller JH. Transposable elements. Cell 20(3):579-95 (1980).
    [84] Lima BP, Hu LI, Vreeman GW, Weibel DB, Lux R. The oral bacterium Fusobacterium nucleatum binds Staphylococcus aureus and alters expression of the staphylococcal accessory regulator sarA. Microb Ecol 78(2):336-347 (2019).
    [85] Gharbia SE, Shah HN, Lawson PA, Haapasalo M. Distribution and frequency of Fusobacterium nucleatum subspecies in the human oral cavity. Oral Microbiol Immunol 5(6):324-7 (1990).
    [86] Lourenço TG, Heller D, Silva-Boghossian CM, Cotton SL, Paster BJ, Colombo AP. Microbial signature profiles of periodontally healthy and diseased patients. J Clin Periodontol 41(11):1027-36 (2014).
    [87] Al-Hebshi NN, Nasher AT, Maryoud MY, Homeida HE, Chen T, Idris AM, Johnson NW. Inflammatory bacteriome featuring Fusobacterium nucleatum and Pseudomonas aeruginosa identified in association with oral squamous cell carcinoma. Sci Rep 7(1):1834 (2017).
    [88] Yang CY, Yeh YM, Yu HY, Chin CY, Hsu CW, Liu H, Huang PJ, Hu SN, Liao CT, Chang KP and others. Oral microbiota community dynamics associated with oral squamous cell carcinoma staging. Front Microbiol 9:862 (2018).
    [89] Geng F, Zhang Y, Lu Z, Zhang S, Pan Y. Fusobacterium nucleatum caused DNA damage and promoted cell proliferation by the Ku70/p53 pathway in oral cancer cells. DNA Cell Biol 39(1):144-151 (2020).
    [90] Zhang, S., Li, C., Liu, J., Geng, F., Shi, X., Li, Q., Lu, Z., & Pan, Y. Fusobacterium nucleatum promotes epithelial-mesenchymal transiton through regulation of the lncRNA MIR4435-2HG/miR-296-5p/Akt2/SNAI1 signaling pathway. FEBS J, 10.1111/febs.15233 (2020). Advance online publication. https://doi.org/10.1111/febs.15233
    [91] Yost S, Stashenko P, Choi Y, Kukuruzinska M, Genco CA, Salama A, Weinberg EO, Kramer CD, Frias-Lopez J. Increased virulence of the oral microbiome in oral squamous cell carcinoma revealed by metatranscriptome analyses. Int J Oral Sci 10(4):32 (2018).
    [92] Mangan DF, Novak MJ, Vora SA, Mourad J, Kriger PS. Lectinlike interactions of Fusobacterium nucleatum with human neutrophils. Infect Immun 57(11):3601-11 (1989).
    [93] Weiss EI, Shaniztki B, Dotan M, Ganeshkumar N, Kolenbrander PE, Metzger Z. Attachment of Fusobacterium nucleatum PK1594 to mammalian cells and its coaggregation with periodontopathogenic bacteria are mediated by the same galactose-binding adhesin. Oral Microbiol Immunol 15(6):371-7 (2000).
    [94] Tuttle RS, Strubel NA, Mourad J, Mangan DF. A non-lectin-like mechanism by which Fusobacterium nucleatum 10953 adheres to and activates human lymphocytes. Oral Microbiol Immunol 7(2):78-83 (1992).
    [95] Deshpande RG, Khan MB, Genco CA. Invasion of aortic and heart endothelial cells by Porphyromonas gingivalis. Infect Immun 66(11):5337-43 (1998).
    [96] Shaniztki B, Hurwitz D, Smorodinsky N, Ganeshkumar N, Weiss EI. Identification of a Fusobacterium nucleatum PK1594 galactose-binding adhesin which mediates coaggregation with periopathogenic bacteria and hemagglutination. Infect Immun 65(12):5231-7 (1997).
    [97] Fujii R, Saito Y, Tokura Y, Nakagawa KI, Okuda K, Ishihara K. Characterization of bacterial flora in persistent apical periodontitis lesions. Oral Microbiol Immunol 24(6):502-5 (2009).
    [98] Blount P, Schroeder MJ, Kung C. Mutations in a Bacterial mechanosensitive channel change the cellular response to osmotic stress. J Biol Chem 272(51):32150-32157 (1997).
    [99] Harapanahalli AK, Younes JA, Allan E, van der Mei HC, Busscher HJ. Chemical signals and mechanosensing in bacterial responses to their environment. PLos Pathogens 11(8):e1005057 (2015).
    [100] Carniello V, Peterson BW, van der Mei HC, Busscher HJ. Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth. J. Colloid Interface Sci. 261:1-14 (2018).

    無法下載圖示 校內:2025-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE