簡易檢索 / 詳目顯示

研究生: 陳慶穎
Chen, Ching-Ying
論文名稱: 優化雙顆垂直軸風機及探討四顆風機陣列之功率與噪音
Optimization of Two Vertical Axis Wind Turbines and Investigation of Power and Noise for Four Turbines Arrays
指導教授: 黃啓鐘
Hwang, Chii-Jong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 72
中文關鍵詞: 田口方法功率係數垂直軸風機噪音
外文關鍵詞: SB-VAWTs, Taguchi method, average power coefficient
相關次數: 點閱:102下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 再生能源的發展可以有效減少燃燒化石燃料所衍生的問題,而風力發電是目前世界上增長最快的能源。小型垂直軸風機適合住宅發電,顯示安裝在城市屋頂的潛力。本文所探討之直立葉片垂直軸風機 (SB-VAWT) 包含三片NACA0015翼型之直立葉片,弦長為0.4公尺,風機半徑為1.25公尺。首先利用GAMBIT建立風機之幾何外型,接著使用商業軟體ANSYS 16.0進行流場計算。影響風機系統之輸出功率本文選用之參數為:風機間夾角 (β)、尖端速度比 (λ)、風機間間距 (S)、風機旋轉方向,及相位角 (ϕ) 五個參數來優化雙顆垂直軸風機系統。使用田口方法進行分析,對於每個參數,考慮四個不同的水準。經由分析,五個因子對於輸出功率的影響力排名為:尖端速度比 > 風機間夾角 > 風機旋轉方向 > 風機間間距 > 相位角。最佳之組合為β = 120º,λ = 2,S = 3.0d,旋轉方向= (順,逆),和ϕ = 0º。經由優化後,雙顆風機系統之平均功率係數相對於單顆風機提升9.97%。接下來,依據上述最佳化雙顆風機之排列進行四顆風機陣列之配置,下游風機對與上游風機對之距離為15公尺。經由計算結果顯示,下游風機對之平均功率係數相對低於上游風機對35.2%,相較於單顆風機之功率係數,總平均功率係數下降13.99 %。雙顆及四顆風機系統之噪音分布具有方向性,與自由流垂直之上下方位之噪音較大。在離中心左右方向約250公尺外之區域,雙顆及四顆風機之噪音分別符合第三類管制區之噪音管制標準,及第四類管制區之噪音管制標準。

    Wind power is the world's fastest growing energy resource currently. In particular, small scale VAWTs are suitable for residential power generation and show potential for urban rooftop installations. The power output of two straight-bladed vertical-axis wind turbines is simulated numerically as well as analyzed and optimized using the Taguchi method. Five operating factors of incoming flow angle (β), tip speed ratio (λ), turbine spacing (S), rotational direction (RD), and blade angle (ϕ) along with four levels are taken into consideration to account for their influences on the performance of the dual turbine system. An orthogonal array of L16(45) is designed. The profile of extent indicates that the factors λ and β play a crucial role in determining power output, whereas the factor ϕ almost plays no part on the power output. Moreover, the influence strength order of each factor is featured by λ > β > RD > S > ϕ. Furthermore, the analysis of the single-to-noise suggests that the combination of the five factors for optimum operation conditions is located at λ=2, β=120º, (clockwise, counterclockwise), ϕ=0º, and S=3d, as a result of the enhancement in the interaction of the two turbines. Compared to the single wind turbine operated at λ=2 along with counterclockwise rotation, the mean power output ( ) of the two turbine system is enlarged by 9.97 %. Then, based on optimization of two turbines, the downwind turbine pair in the four-turbine array are spaced 15 m from the upwind turbine pair. Results of the average power coefficient suggest that the downwind turbine pair are about 35.2% lower compared to the upwind turbine pair. In the sound field calculation, (far from x=250 m, x= -250 m) the two SB-VAWTs system and the Four-turbine arrays conform to the third category control area of noise control criteria and the fourth category control area of noise control criteria, respectively.

    摘要 III Abstract V 致謝 XIII 目錄 XIV 表目錄 XVIII 圖目錄 XX 符號說明 XXIII 第一章 緒論 1 1-1 前言 1 1-2 動機與目的 1 1-3 文獻回顧 3 1-4 基礎理論 6 1-4-1 Betz極限 6 1-4-2 座標系統 7 1-5 研究內容 8 第二章 研究方法 10 2-1 數值方法 10 2-1-2 統御方程式 11 2-1-3 SIMPLEC演算法 12 2-1-4 QUICK法 15 2-2 DES模型 16 2-3 噪音模型 17 2-3-1 Ffowcs Williams and Hawkings 方程式 17 2-3-2 聲壓值 18 2-4 物理模型 19 2-5 邊界條件與流場設定 20 2-5-1 邊界條件 20 2-5-2 流場設定 20 2-6 田口方法 20 2-6-1 因子 (Factor) 及水準 (Level) 22 2-6-2 直交表 22 第三章 網格建立與網格驗證 23 3-1 網格生成 23 3-2 網格驗證 23 3-2-1 單顆驗證 23 3-2-2 雙顆驗證 24 3-3 雙顆風機系統之網格獨立性 24 第四章 結果與討論 26 4-1 田口方法之分析及優化 26 4-1-1 田口方法分析平均功率係數 26 4-1-2 因子分析 26 4-1-3 水準之最佳組合 28 4-2 四顆垂直軸風機系統之結果 29 4-3 噪音之計算結果 30 4-3-1 最佳化雙顆風機之噪音分布 30 4-3-2 四顆風機之噪音分布 31 第五章 結論與建議 32 5-1 結論 32 5-1-1 最佳化之雙顆風機系統 32 5-1-2 四顆風機系統 33 5-1-3 噪音 33 5-2 建議 34 參考文獻 35

    Almohammadi KM, Ingham DB, Ma L, Pourkashan M. Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine. Energy 58:483-493, 2013.
    Ahmadi-Baloutaki M, Carriveau R, Ting DSK. A wind tunnel study on the aerodynamic interaction of vertical axis wind turbines in array configurations. Renewable Energy 96:904-913, 2016.
    Bhutta MMA, Hayat N, Farooq AU, Ali Z, Jamil SR, Hussain Z. Vertical axis wind turbine – A review of various configurations and design techniques. Renewable and Sustainable Energy Reviews 16:1926-1939, 2012.
    Chen WH, Peng JH, Bi XT. A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews 44:847-866, 2015.
    Chen WH. Dynamics of sulfur dioxide absorption in a raindrop falling at terminal velocity. Atmospheric Environment 35:4777-4790, 2001.
    Chen WH, Chen CJ, Hung CI. Taguchi approach for co-gasification optimization of torrefied biomass and coal. Bioresource Technology 144:615-622, 2013.
    Dabiri JO. Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays. Journal of Renewable and Sustainable Energy 3:043104, 2011.
    Du SW, Chen WH, Lucas J. Performances of pulverized coal injection in blowpipe and tuyere at various operational conditions. Energy Conversion and Management. 48:2069-2076, 2007.
    Fiedler AJ, Tullis S. Blade offset and pitch effects on a high solidity vertical axis wind turbine. Wind Engineering 33:237-246, 2009.
    GWEC, Global Wind Report 2015. GLOBAL WIND ENERGY COUNCIL.
    Islam M, Fartaj A, Carriveau R. Analysis of the design parameters related to a fixed-pitch straight-bladed vertical axis wind turbine. Wind Engineering 32:491-507, 2008.
    Islam MR, Mekhilef S, Saidur R. Progress and recent trends of wind energy technology. Renewable and Sustainable Energy Reviews 21:456-468, 2013.
    Iida A, Mizuno A, Fukudome K. Numerical Simulation of Aerodynamic Noise Radiated form Vertical Axis Wind Turbines. Proceedings of the 18th International Congress on Acoustics, CD-ROM, 2004.
    Kjellin K, Bülow F, Eriksson S, Deglaire P, Leijon M, Bernhoff H. Power coefficient measurement on a 12 kW straight bladed vertical axis wind turbine. Renewable Energy 36:3050-3053, 2011.
    Kinzel M, Mulligan Q and Dabiri JO. Energy exchange in an array of vertical-axis wind turbines. Journal of Turbulence 13:1–13, 2012.
    Mohamed MH, Janiga G, Pap E, Thévenin D. Optimization of Savonius turbines using an obstacle shielding the returning blade. Renewable Energy 35:2618-2626, 2010.
    Parker CM, Leftwich MC. The effect of tip speed ratio on a vertical axis wind turbine at high Reynolds numbers. Exp Fluids 57:74, 2016.
    Simão Ferreira CJ, Bijl H, van Bussel G, van Kuik G. Simulating Dynamic Stall in a 2D VAWT:Modeling strategy, verification and validation with Particle Image Velocimetry data. Journal of Physics:Conference Series 75:012023, 2007.
    South, P, Mitchell, R, Jacobs, E, Strategies for the Evaluation of Advanced Wind Energy Concepts, Solar Energy Research Institute USA, SERI/SP-635-1142, 1983.
    Shaheen M, El-Sayed M, Abdallah S. Numerical study of two-bucket Savonius wind turbine cluster. Journal of Wind Engineering and Industrial Aerodynamics 137:78-89, 2015.
    Sun X, Luo D, Huang D, Wu G. Numerical study on coupling effect among multiple Savonius turbines. Journal of Renewable and Sustainable Energy 4:053107, 2012.
    Shigetomi A, Murai Y, Tasaka Y,Takeda Y. Interactive flow field around two Savonius turbines. Renewable Energy 36:536-545, 2011.
    Saha UK, Rajkumar MJ. On the performance analysis of Savonius rotor with twisted blades. Renewable Energy 31:1776-1788, 2006.
    Wang S, Ma L, Ingham DB, Pourkashanian M and Tao Z. Turbulence Modelling of Deep Dynamic Stall at Low Reynolds Number. Journal of Fluids and Structures 33:191–209, 2012.
    Whittlesey RW, Liska S and Dabiri JO. Fish schooling as a basis for vertical axis wind turbine farm design. IOP 2010.
    謝承翰. 垂直軸風力機扭力與功率的檢測與模擬. 成功大學碩士論文 2011.
    嚴明煜. 垂直軸風機配置對於風機陣列流場與噪音之影響. 成功大學碩士論文 2014.
    黃俊諺. 利用田口法探討雙顆垂直軸風機之陣列. 成功大學碩士論文 2015.
    李輝煌. 田口方法¬品質設計的原理與實務Taguchi Methods第四版. 高麗書有限公司出版 2013.
    台灣電力公司. 國家再生能源未來展望. 2015.

    下載圖示 校內:2021-08-04公開
    校外:2021-08-04公開
    QR CODE