| 研究生: |
劉曉君 Liu, Hsiao-Chun |
|---|---|
| 論文名稱: |
通電對鍍錫銅線微結構與性質影響之研究 The microstructure and properties variations of Sn-coated Cu wires induced by electric current stressing |
| 指導教授: |
林光隆
Lin, Kwang-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 鍍錫銅線 、電遷移 、介金屬化合物 、電阻率 、拉伸強度 、破損機制 |
| 外文關鍵詞: | Sn-coated Cu wire, Electromigration, Intermetallic compound, Resistivity, Tensile properties, Fracture mechanism |
| 相關次數: | 點閱:56 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的為藉由觀察通電對鍍錫銅線之微結構影響,探討其機械性質與電性變化之機制。鍍錫銅線施以9.7-14.6 × 103 A/cm2 (1.6A-2.4A)之電流密度達4至36小時,再進行機械性質與電性的量測,並觀察其微結構。研究結果顯示,通電後鍍錫銅線的電阻率並沒有明顯的變化;但是中央銅線的部份硬度值上升,而鍍錫銅線的伸長率與韌性大幅下降,其下降幅度高達35%。在銅/錫界面生成Cu6Sn5與Cu3Sn兩種介金屬化合物(Intermetallic compound, IMC),同時存在一些孔洞;通電後並沒有觀察到明顯的相轉變或生成新的相。兩種界金屬化合物的厚度都隨著電流密度的提高與通電時間的增長而逐漸增厚;隨著電流密度增加,介金屬化合物的成長機制由擴散控制(Diffusion control)轉變為反應控制(Reaction control);中央銅線的銅晶粒的尺寸則有縮小與雙晶增加的趨勢。綜上所述,鍍錫銅線機械性質的改變,是界面介金屬化合物增厚、銅晶粒細化與雙晶增加的共同影響所致。此外,拉伸破斷面分析顯示有兩種破斷模式;模式一是破斷於銅、錫與界面,模式二則是在有界金屬化合物的銅/錫界面。而隨著界面介金屬化合物厚度的增長,會發生模式一轉變為模式二的情形。
This study discussed the mechanism of properties change on Sn-coated Cu wires after current stressing through the investigation of microstructure and mechanical properties. The Sn-coated Cu wires were cut into 60 cm long and subjected to 9.7-14.6 × 103 A/cm2 direct current for 4-36 hours. The results show that the resistivity almost remained the same while the micro-hardness of Cu kept increasing with the increase of current density and current stressing time. By contrast, the elongation and tensile toughness showed a dramatically decrease after current stressing. The intermetallic compounds formed at the Cu/Sn interface were identified as Cu6Sn5 and Cu3Sn, which grew thicker with higher current density and longer current stressing time. In addition, the growth kinetics of IMCs changed from diffusion control to reaction control as the current density increased. EBSD analysis indicated that the grain size of Cu decreased, and the twin fraction increased after current stressing. It can be summarized that the variations in the mechanical properties of Sn-coated Cu wires were ascribed to the increase in interfacial IMCs, Cu grain refinement and the increase in twin fraction of Cu grains. On the other hand, the fracture mode of Sn-coated Cu wires would transfer from mode 1 to mode 2 as the interfacial IMCs grew thicker. Mode 1 indicated that the fracture occurred at Cu, Sn, Cu/intermetallic interface and initiated at the Cu/intermetallic interface, while mode 2 initiated within the interfacial IMCs.
[1] S. Fürtauer, D. Li, D. Cupid, H. Flandorfer, “The Cu–Sn phase diagram, Part I: New experimental results”, Intermetallics, vol. 34, pp. 142-147, 2013.
[2] Son J, Yu D-Y, Kim M-S, Ko Y-H, Byun D-J, Bang J. “Nucleation and Morphology of Cu6Sn5 Intermetallic at the Interface between Molten Sn-0.7Cu-0.2Cr Solder and Cu Substrate”, Metals, vol. 11, pp. 210, 2021.
[3] N. Dariavach, P. Callahan, J. Liang, R. Fournelle, “Intermetallic Growth Kinetics for Sn-Ag, Sn-Cu, and Sn-Ag-Cu Lead-Free Solders on Cu, Ni, and Fe-42Ni Substrates”, Journal of electronic materials, vol. 35, pp. 1581-1592, 2006.
[4] C. Hang, Y. Tian, R. Zhang, D. Yang, “Phase transformation and grain orientation of Cu–Sn intermetallic compounds during low temperature bonding process”, Journal of Materials Science: Materials in Electronics, vol. 24, pp. 3905–3913, 2013.
[5] N. Zhao, Y. Zhong, M. L. Huang, H. T. Ma, W. Dong, “Growth kinetics of Cu6Sn5 intermetallic compound at liquid-solid interfaces in Cu/Sn/Cu interconnects under temperature gradient”, Scientific Reports, vol. 5, pp. 13491, 2015.
[6] Z. Zhu, H. Ma, S. Shang, H. Ma, Y. Wang, X. Li, “Efect of polycrystalline Cu microstructures on IMC growth behavior at Sn/Cu soldering interface”, Journal of Materials Science: Materials in Electronics, vol. 30, pp. 15964–15971, 2019.
[7] H. F. Zou, H. J. Yang, Z. F. Zhang, “Morphologies, orientation relationships and evolution of Cu6Sn5 grains formed between molten Sn and Cu single crystals”, Acta Materialia, vol. 56, pp. 2649-2662, 2008.
[8] M. Yang, M. Li, L. Wang, Y. Fu, J. Kim, L. Weng, “Growth behavior of Cu6Sn5 grains formed at an Sn3.5Ag/Cu interface”, Materials Letters, vol. 65, pp. 1506-1509, 2011.
[9] P. J. Shang, Z. Q. Liu, X. Y. Pang, D. X. Li, J. K. Shang, “Growth mechanisms of Cu3Sn on polycrystalline and single crystalline Cu substrates”, Acta Materialia, vol. 57, pp. 4697-4706, 2009.
[10] L. Yin, P. Borgesen, “On the root cause of Kirkendall voiding in Cu3Sn”, Journal of Materials Research, vol. 26, pp. 455-466, 2011.
[11] J. Y. Kim, J. Yu, S. H. Kim, “Effects of sulfide-forming element additions on the Kirkendall void formation and drop impact reliability of Cu/Sn–3.5Ag solder joints”, Acta Materialia, vol .57, pp. 5001-5012, 2009.
[12] Q. Li, Y. C. Chan, “Growth kinetics of the Cu3Sn phase and void formation of sub-micrometre solder layers in Sn–Cu binary and Cu–Sn–Cu sandwich structures”, Journal of Alloys and Compounds, vol. 567, pp. 47-53, 2013.
[13] L. Mo, Z. Chen, F. Wu, C. Liu, “Microstructural and mechanical analysis on Cu–Sn intermetallic micro-joints under isothermal condition”, Intermetallics, vol. 66, pp. 13-21, 2015.
[14] G. Ross, V. Vuorinen, M. Paulasto-Kröckel, “Void formation and its impact on Cu-Sn intermetallic compound formation”, Journal of Alloys and Compounds, vol. 677, pp. 127-138, 2016.
[15] J. F. Li, P. A. Agyakwa, C. M. Johnson, “A numerical method to determine interdiffusion coefficients of Cu6Sn5 and Cu3Sn intermetallic compounds”, Intermetallics, vol. 40, pp. 50-59, 2013.
[16] Y. C. Chan, A. C. K So, J. K. L. Lai, “Growth kinetic studies of Cu–Sn intermetallic compound and its effect on shear strength of LCCC SMT solder joints”, Materials Science and Engineering: B, vol. 55, pp. 5-13, 1998.
[17] M. I. I. Ramli, M. A. A. M. Salleh, M. M. A. B. Abdullah, N. S. M. Zaimi, A. V. Sandu, P. Vizureanu, A. Rylski, S. F. M. Amli, “Formation and Growth of Intermetallic Compounds in Lead-Free Solder Joints: A Review”, Materials, vol. 15, pp. 1451, 2022.
[18] M. Schaefer, R. A. Fournelle, J. Liang, “Theory for Intermetallic Phase Growth Between Cu and Liquid Sn-Pb Solder Based on Grain Boundary Diffusion Control”, Journal of Electronic Materials, vol. 27, pp. 1167-1176, 1998.
[19] J. F. Li, P. A. Agyakwa, C. M. Johnson, “Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process”, Acta Materialia, vol. 59, pp. 1198-1211, 2011.
[20] Y. Yuan, Y. Guan, D. Li, N. Moelans, “Investigation of diffusion behavior in Cu-Sn solid state diffusion couples”, Journal of Alloys and Compounds, vol. 661, pp. 282-293, 2016.
[21] ASM Handbook Committee, Metals Handbook, 9 ed. vol.2, American Society of Metals, pp. 275-276, 617-618, 726-732, 811-813, 1979.
[22] D. R. Frear, S. N. Burchett, H. S. Morgan and J. H. Lau, The Mechanics of Solder Alloy Interconnects, Van Nostrand Reinhold: New York, pp. 60-61, 1994.
[23] D. Tabor, The hardness of metals, OUP Oxford: United States of America, pp. 1-4, 2000.
[24] J. Yu, G. Wang, Y. Rong, “Experimental Study on the Surface Integrity and Chip Formation in the Micro Cutting Process”, Procedia Manufacturing, vol. 1, pp. 655-662, 2015.
[25] F. Nazeer, Z. Ma, L. Gao, A. Malik, M. Abubaker, Khan, F. Wang, H. Li, “Effect of processing routes on mechanical and thermal properties of copper–graphene composites”, Materials Science and Technology, vol. 35, pp. 1770-1774, 2019.
[26] S. E. Negm, H. Mady, A. A. Bahgat, “Influence of the addition of indium on the mechanical creep of Sn–3.5%Ag alloy”, Journal of Alloys and Compounds, vol. 503, pp. 65-70, 2010.
[27] R. M. Shalaby, F. E. Ibrahim, M. Kamal, “Effect of Terbium Additions on Microstructural, Thermal and Mechanical Properties of Eutectic Sn-3.5Ag Pb- Free Solder for Low Cost Electronic Assembly”, Journal of Advances in Physics, vol. 16, pp. 2347-3487, 2019.
[28] ASM International, Atlas of Stress-strain Curves, 2 ed., ASM International, pp. 1, 2002.
[29] M. Li, S. J. Zinkle, “Physical and Mechanical Properties of Copper and Copper Alloys”, Elsevier Ltd., vol. 4, pp. 667-690, 2012.
[30] D. R. Askeland, P. P. Fulay, and W. J. Wright, The science and engineering of materials, 6 ed., Cengage Learning, pp. 208-215, 2010.
[31] W. D. C., Jr., Materials Science and Engineering - An Introduction, 7 ed., John Wiley & Son, Inc.: United States of America, pp. 144, 147, 148, 2007.
[32] F. Long, X. Guo, K. Song, S. Jia, V. Yakubov, S. Li, Y. Yang, S. Liang, “Synergistic strengthening effect of carbon nanotubes (CNTs) and titanium diboride (TiB2) microparticles on mechanical properties of copper matrix composites”, Journal of Materials Research and Technology, vol. 9, pp. 7989-8000, 2020.
[33] I. Kientzl, I. Orbulov, J. Dobranszky, A. Nemeth, “The processing and testing of aluminium matrix composite wires, double composites and block composites”, 2th European Conference on Composite Materials, 2006.
[34] M. F. Ashby, H. Shercliff and D. Cebon, Materials Engineering, Science, Processing and Design, Elsevier Ltd.: UK, pp. 164-181, 2007.
[35] I. Altenberger, H. A. Kuhn, H. R. Müller, M. Mhaede, M. G. Kermanshahi, L. Wagner, “Material properties of high-strength beryllium-free copper alloys”, International Journal of Materials and Product Technology, vol. 50, pp. 124-146, 2015.
[36] B. Balakrisnan, C. C. Chum, M. Li, Z. Chen, T. Cahyadi, “Fracture Toughness of Cu-Sn Intermetallic Thin Films”, Journal of Electronic Materials, vol. 32, pp. 166-171, 2003.
[37] G. Ghosh, “Elastic properties, hardness, and indentation fracture toughness of intermetallics relevant to electronic packaging”, Journal of Materials Research, vol. 19, pp. 1439-1454, 2004.
[38] P. Ratchev, T. Loccufier, B. Vandevelde, B. Verlinden, S. Teliszewski, D. Werkhoven, B. Allaert, “A Study of Brittle to Ductile Fracture Transition Temperatures in Bulk Pb-Free Solders”, EMPC, 2005.
[39] P. S. Ho, T. Kwok, “Electromigration in metals”, Reports on Progress in Physics, vol. 52, pp. 301-348, 1989.
[40] H. B. Huntington, “Effect of driving forces on atom motion”, Thin Solid Films, vol. 25, pp. 265-280, 1975.
[41] Rovitto, M., Electromigration reliability issue in interconnects for three-dimensional integration technologies, Technische Universität Wien, pp.32, 2016.
[42] K. Compaan, Y. Haven, "Correlation factors for diffusion in solids", Transactions of the Faraday Society, vol. 52, pp. 786-801, 1956.
[43] A. Scorzoni, B. Neri, C. Caprile, F. Fantini, “Electromigration in thin-film interconnection lines: models, methods and results”, Materials Science Reports, vol. 7, pp. 143-220, 1991.
[44] J. P. Joule, “LXIX. On the heat disengaged in chemical combinations: To the editors of the Philosophical Magazine and Journal”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 3, pp. 481-504, 1852.
[45] C. Chen, H. M. Tong, K. N. Tu, “Electromigration and Thermomigration in Pb-Free Flip-Chip Solder Joints”, Annual Review of Materials Research, vol. 40, pp. 531-555, 2010.
[46] C.-L. Liang, K.-L. Lin, “The microstructure and property variations of metals induced by electric current treatment: A review”, Materials Characterization, vol. 145, pp. 545-555, 2018.
[47] H. Conrad, N. Karam, S. Mannan, “Effect of prior cold work on the influence of electric current pulses on the recrystallization of copper”, Scripta Metallurgica, vol. 18, pp. 275-280, 1984.
[48] P.-C. Liang, K.-L. Lin, “Non-deformation recrystallization of metal with electric current stressing”, Journal of Alloys and Compounds, vol. 722, pp. 690-697, 2017.
[49] Y.-S. Wang, W.-H. Lee, S.-C. Chang, J.-N. Nian, Y.-L. Wang, “An electroplating method for copper plane twin boundary manufacturing”, Thin Solid Films, vol. 544, pp. 157-161, 2013.
[50] P.-H. Ku, C.-L. Liang, K.-L. Lin, “Electromigration-assisted manipulation of microstructure and properties of metals via cyclic direct current stressing treatment”, Materials Characterization, vol. 174, pp. 11098, 2021.
[51] B. Chao, S.-H. Chae, X. Zhang, K.-H. Lu, M. Ding, J. Im, P. S. Ho, “Electromigration enhanced intermetallic growth and void formation in Pb-free solder joints”, Journal of Applied Physics, vol. 100, pp. 084909, 2006.
[52] W.-Y. Chen, T.-C. Chiu, K.-L. Lin, Y.-S. Lai, “Electrorecrystallization of intermetallic compound in the Sn0.7Cu solder joint”, Intermetallics, vol. 26, pp. 40-43, 2012.
[53] Z. C. Cordero, B. E. Knight, C. A. Schuh, “Six decades of the Hall–Petch effect – a survey of grain-size strengthening studies on pure metals”, International Materials Reviews, vol. 61, pp. 495-512, 2016.
[54] J. J. Plombon, E. Andideh, V. M. Dubin, J. Maiz, “Influence of phonon, geometry, impurity, and grain size on Copper line resistivity”, Applied Physics Letters, vol. 89, pp. 113124, 2006.
[55] S. Gao, M. Chen, S. Chen, N. Kamikawa, A. Shibatal, N. Tsuji, “Yielding Behavior and Its Effect on Uniform Elongation of Fine Grained IF Steel”, Materials Transactions, vol. 55, pp. 73-77, 2014.
[56] H. Ran, R. R. Jin, Y. F. Wang, M. S. Wang, Q. He, F. J. Guo, Y. Wen, C. X. Huang, “Optimizing the strength and ductility of Cu–Al alloy by an ideal grain structure”, Materials Science & Engineering A, vol. 807, pp. 140906, 2021.
[57] P. Xue, B. L. Xiao, Z. Y. Ma, “Enhanced strength and ductility of friction stir processed Cu–Al alloys with abundant twin boundaries”, Scripta Materialia, vol. 68, pp. 751-754, 2013.
[58] L. Ren, W. Xiao, D. Kent, M. Wan, C. Ma, L. Zhou, “Simultaneously enhanced strength and ductility in a metastable β-Ti alloy by stress-induced hierarchical twin structure”, Scripta Materialia, vol. 184, pp. 6-11, 2020.
[59] E. Ma, Y. M. Wang, Q. H. Lu, M. L. Sui, L. Lu, K. Lu, “Strain hardening and large tensile elongation in ultrahigh-strength nano-twinned copper”, Applied Physics Letters, vol. 85, pp. 4932-4934, 2004.
[60] V. Randle, M. Coleman, “A study of low-strain and medium-strain grain boundary engineering”, Acta Materialia, vol. 57, pp. 3410-3421, 2009.
[61] B. V. Sarada, Ch. L. P. Pavithra, M. Ramakrishna, T. N. Rao, G. Sundararajan, “Highly (111) Textured Copper Foils with High Hardness and High Electrical Conductivity by Pulse Reverse Electrodeposition”, Electrochemical and Solid-State Letters, vol. 13, pp. D40-D42, 2010.
[62] B.H.-L. Chao, X. Zhang, S.-H. Chae, P. S. Ho, “Recent advances on kinetic analysis of electromigration enhanced intermetallic growth and damage formation in Pb-free solder joints”, Microelectronics Reliability, vol. 49, pp. 253-263, 2009.
[63] M. Ding, G. Wang, B. Chao, P. S. Ho, “Effect of contact metallization on electromigration reliability of Pb-free solder joints”, Journal of Applied Physics, vol. 99, pp. 094906, 2006.
[64] D. Yao, J. K. Shang, “Effect of aging on fatigue crack growth at Sn-Pb/cu interfaces”, Metallurgical and Materials Transactions A, vol. 26, pp. 2677-2685, 1995.
[65] D. R. Frear, P. T. Vianco, “Intermetallic growth and mechanical behavior of low and high melting temperature solder alloys”, Metal. Mater. Trans. A 25A, vol. 25, pp. 1509-1523, 1994.
[66] Z. Zhao, J. Shang, A. Hu, M. Li, “The effects of Sn solder grain size on the morphology and evolution of Cu6Sn5 in the aging process”, Materials Letters, vol. 185, pp. 92-95, 2016.
[67] M.-H. Lu, K.-C. Hsieh, “Sn-Cu Intermetallic Grain Morphology Related to Sn Layer Thickness”, Journal of Electronic Materials, vol. 36, pp. 1448–1454, 2007.
[68] F. Long, X. Guo, K. Song, S. Jia, V. Yakubov, S. Li, Y. Yang, S. Liang, “Synergistic strengthening effect of carbon nanotubes (CNTs) and titanium diboride (TiB2) microparticles on mechanical properties of copper matrix composites”, Journal of Materials Research and Technology, vol. 9, pp. 7989-8000, 2020.
[69] J. J. Plombon, E. Andideh, V. M. Dubin, J. Maiz, “Influence of phonon, geometry, impurity, and grain size on Copper line resistivity”, Applied Physics Letters, vol. 89, p.p. 113124, 2006.
[70] C. Andersson, P.-E. Tegehall, D. R. Andersson, G. Wetter, J. Liu, “Thermal Cycling Aging Effect on the Shear Strength, Microstructure, Intermetallic Compounds (IMC) and Crack Initiation and Propagation of Reflow Soldered Sn-3.8Ag-0.7Cu and Wave Soldered Sn-3.5Ag Ceramic Chip Components”, IEEE Transcations on components and packaging technologies, vol. 31, pp. 331-344, 2008.
[71] D. R. Frear, S. N. Burchett, H. S. Morgan, J. H. Lau, The Mechanics of Solder Alloy Interconnects, New York: Van Nostrand Reinhold, pp. 47–49, 60–63, 1994.
[72] H.-J. Albrecht, J. Gamalski, “Fatigue properties of BGA solder joints: A comparison of thermal and power cycle tests,” Microelectronics International, vol. 14, pp. 21-30, 1997.
[73] P. J. Shang, Z. Q. Liu, X. Y. Pang, D. X. Li, J. K. Shang, “Growth mechanisms of Cu3Sn on polycrystalline and single crystalline Cu substrates”, Acta Materialia, vol. 57, pp. 4697-4706, 2009.