簡易檢索 / 詳目顯示

研究生: 吳昱陞
Wu, Yu-Sheng
論文名稱: 非晶氧化銦鎵鋅薄膜電晶體之電性研究
Investigating the electrical characteristics of Amorphous Indium Gallium Zinc Oxide Thin Film Transistors
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 99
中文關鍵詞: 非晶氧化銦鎵鋅薄膜電晶體
外文關鍵詞: Amorphous Indium Gallium Zinc Oxide, Thin Film Transistors
相關次數: 點閱:86下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此篇論文中,我們製作並探討使用不同絕緣層對氧化銦鎵鋅(IGZO)薄膜電晶體將會有何影響。實驗第一部分,將著重於電性分析,我們分別使用100奈米之五氧化二鉭(Ta2O5)與200奈米之二氧化矽(SiO2)做為無機材料之絕緣層製作氧化銦鎵鋅薄膜電晶體。兩顆元件之次臨界擺幅分別為0.12、0.75 V/dec。電子遷移率分別為102.07、12.54 cm2V-1s-1。電流開關比分別為1.45 × 106以及1.24 × 105。臨界電壓分別為0.6V以及 -0.7V。由於較低之漏電流以及較高之介電係數,以100奈米之五氧化二鉭做為絕緣層之薄膜電晶體擁有較好之元件特性。本研究論文亦有以旋轉塗佈之方法製作PVP材料有機絕緣層,做為氧化銦鎵鋅薄膜電晶體之絕緣層。我們選用PVP:PMF比例為10:1做為調配比例,於此比例下製作之絕緣層將擁有較平坦表面和較高的絕緣層電容值,因此擁有比較好之臨界擺幅。實驗結果顯示,於這三種不同之絕緣層下,以100奈米五氧化二鉭作為絕緣層之薄膜電晶體擁有最佳之元件特性。
    第二部分的實驗中,將著重於元件之穩定性分析探討,因為若要將元件應用到實體產品,穩定性將是一大重點考量因素,經過穩定性分析後,實驗結果顯示亦為100奈米五氧化二鉭作為絕緣層之薄膜電晶體擁有最佳之穩定性,因此於本篇論文研究中,五氧化二鉭是最合適做為薄膜電晶體絕緣層之材料。下圖為使用於本論文中研究分析概略流程圖。

    In this thesis, amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (TFTs) with different kinds of dielectric layers were fabricated and discussed. In the first part of our experiments, we focused on the electrical characteristics analyzed. 100 nm Ta2O5 and 200 nm SiO2 thin films were used as inorganic dielectric layers for a-IGZO TFTs. The subthreshold swings (ss) of the devices were 0.12 and 0.75 V/dec, respectively. The carrier mobilities were 102.07, and 12.54 cm2V-1s-1. On/off current ratios were 1.45 × 106 and 1.24 × 105, respectively. The threshold voltages were 0.6V and -0.7V, respectively. Because of the lower leakage current and higher κ value, a-IGZO TFT with a 100 nm Ta2O5 dielectric layer had better performances. We also used the PVP organic material as the dielectric layer by spin-coated in this thesis, weight ratio of PVP and cross-linking agent, PMF 20:1 were used in this work. The TFT with PVP: PMF ratio 10:1 has better ss because in TFT with PVP: PMF ratio 10:1, the PVP layer has the best surface roughness and higher capacitance. The analytic results under these different dielectric materials, a-IGZO TFT with a 100 nm Ta2O5 dielectric layer had the best electrical characteristics.
    In the second part of our experiment, we focused on the elements stability analyzed. If we want to use our experimental elements to practical products, stability is a critical issue that needed to concern. After our stability analysis, the result showed that a-IGZO TFT with a 100 nm Ta2O5 dielectric layer had the best stability. Therefore, Ta2O5¬ is the best suitable material for thin film transistors fabricated in our experiment research. A brief flow chart described our researching steps is shown in the following figure.

    Abstract (in Chinese) IV Abstract (in English) VI 誌謝 XI Chapter 1 Introduction 1 1.1 Overview of a-IGZO 1 1.2 Overview of High-κ Material 4 1.3 Overview of Poly(4-vinylphenol) (PVP) 6 1.4 Background of Thin Film Transistors 7 1.5 Background of Flexible Electronics 9 1.6 Overview of device stability 10 Reference 14 Chapter 2 Fabrication System and Important Parameters 18 2.1 Fabrication System 18 2.1.1 RF Sputtering System 18 2.1.2 Hall Measurement System 20 2.1.3 Atomic Force Microscopes 21 2.1.4 Field Emission Scanning Electron Microscopy (FESEM) 21 2.1.5 X-ray Diffraction Analysis (XRD) 23 2.2 Important Parameters 25 2.2.1 Field-Effect Mobility 25 2.2.2 Threshold Voltage (VT) 26 2.2.3 On/off current Ratio (Ion/off) 26 2.2.4 Subthreshold Swing (ss) 26 Reference 30 Chapter 3 a-IGZO TFTs with SiO2 dielectric layers 31 3.1 Introduction 31 3.2 Fabrication of a-IGZO TFTs with SiO2 dielectric layers 32 3.3 Hall measurement and XRD of a-IGZO thin film 33 3.4 Analysis of AFM 34 3.5 Current-voltage (I-V) characteristics of a-IGZO TFTs with SiO2 dielectric layers 35 3.6 stability of a-IGZO TFTs with SiO2 dielectric layers 37 Reference 50 Chapter 4 a-IGZO TFTs with Ta2O5 dielectric layers 51 4.1 Introduction 51 4.2 Fabrication of a-IGZO TFTs with Ta2O5 dielectric layers 53 4.3 Elemental analysis of Ta2O5 54 4.4 Analysis of AFM 55 4.5 Transmittance of Ta2O5 and a-IGZO thin film 55 4.6 Current-voltage (I-V) characteristics of a-IGZO TFTs with Ta2O5 dielectric layers 56 4.7 Stability of a-IGZO TFTs with Ta2O5 dielectric layers 58 Reference 77 Chapter 5 a-IGZO TFTs with PVP dielectric layers 79 5.1 Introduction 79 5.2 Fabrication of a-IGZO TFTs with PVP dielectric layers 81 5.3 Physical properties of a-IGZO TFTs 82 5.4 Analysis of FTIR 83 5.5 Transmittance of PVP and a-IGZO thin film 83 5.6 Current-voltage (I-V) characteristics of a-IGZO TFTs with PVP dielectric layers 84 5.7 Stability of a-IGZO TFTs with PVP dielectric layers 86 Reference 93 Chapter 6 Conclusion and future work 95 6.1 Conclusion 95 6.2 future works 96 Reference 99

    Chapter 1
    [1] N. F. Mott, E. A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon, Oxford, 1979).
    [2] Hideo Hosono, J. Non-Cryst. Solids 352, 851–858 (2006).
    [3] Hosono, H. et al., J. Non-Cryst. Solids 198–200, 165–169 (1996).
    [4] Orita, M. et al., Phil. Mag. B 81, 501–515 (2001).
    [5] Kenji Nomura, Hiromichi Ohta, Akihiro Takagi, Toshio Kamiya, Masahiro Hirano and Hideo Hosono, Nature, VOL 432 , 488-492 (2004).
    [6] GD Wilk, RMWallace and J.M. Anthony, J. Appl. Phys. 89, 5243 (2001).
    [7] Seong-Ho Kim, Sung-Eun Kim, Joo-Han Park, Sung-Hoan Kim and Myung-Soo Kim, J. Korean Phys. Soc.43, 868 (2003).
    [8] L. Kang, B. H. Lee, W. J. Qi, Y. Jeon, R. Nieh, S.Gopalan, K. Onishi and J. C. Lee, IEEE Electron Device Lett. 21 (2000).
    [9] B. H. Lee, L. Kang, R. Nieh and J. C. Lee, Appl. Phys. Lett. 76, 1926 (2000).
    [10] M. A. Quevedo-Lopez, M. El-Bouanani and B. E. Gnade, J. Appl. Phys. 92, 3540 (2002).
    [11] Kyu-Seong Hwang, Young-sun Jeon, Sang-Bok Kim, Chi-Kyun Kim and Jeong-Sun Oh, J. Korean Phys Soc. 43, 754 (2003).
    [12] H. Y. Yu, N. Wu, M. F. Li, Chunxiang Zhu and B. J. Cho, Appl. Phys. Lett. 81, 3618 (2002).
    [13] H.H. Zhang, C.Y. Ma, Q.Y. Zhang, Vacuum 83, 1311–1316 (2009).
    [14] J. B. Kim, C. Fuentes-Hernandez, W. J. Potscavage, Jr., X.-H. Zhang, and B. Kippelen, Appl. Phys. Lett. 94, 142107 (2009).
    [15] Young-Je Cho, Ji-Hoon Shin, S.M. Bobade, Young-Bae Kim, Duck-Kyun Choi, Thin Solid Films 517, 4115–4118 (2009).
    [16] J. B. Kim, C. Fuentes-Hernandez, and B. Kippelen, Appl. Phys. Lett. 93, 242111 (2008).
    [17] Janos Veres, Simon Ogier, and Giles Lloyd, Dago de Leeuw, Chem. Mater., 16, 4543-4555 (2004).
    [18] Hagen Klauk, Marcus Halik, Ute Zschieschang, Gu¨ nter Schmid, and Wolfgang Radlik, Werner Weber, J. Appl. Phys. 92, 9, (2002).
    [19] Joo Hyon Noh, Chang Su Kim, Seung Yoon Ryu, and Sung Jin Jo, Jpn. J. Appl. Phys., Vol. 46, No. 7A, 4096–4098 (2007).
    [20] P.K. Weimer, Proc. IEEE vol.50, 1462, (1963).
    [21] F. V. Shallcross, Cadmium selenide thin-film transistors, Proc. IEEE vol.51, 851, (1964).
    [22] Hoonha Jeon, Ved Prakash Verma, Sookhyun Hwang, Sooyeon Lee, Chiyoung Park, Do-Hyun Kim, Wonbong Choi, and Minhyon Jeon, Jpn. J. Appl. Phys., Vol. 47, No. 1 , 87–90 (2008).
    [23] Yeon-Keon Moon, Dae-Yong Moon, Sih Lee, Sang-Ho Lee, and Jong-Wan Park, Chang-Oh Jeong, J. Vac. Sci. Technol. B 26, 4, 1472, (2008).
    [24] Chensha Li, Yuning Li, Yiliang Wu, Beng S. Ong, Rafik O. Loutfy, J. Appl. Phys. 102, 076101 (2007).
    [25] Wantae Lim, E. A. Douglas, S.-H. Kim, D. P. Norton, S. J. Pearton, F. Ren, H. Shen, and W. H. Chang, Appl. Phys. Lett. 93, 252103 (2008).
    [26] Wantae Lim, Jung Hun Jang, S.H. Kim, D. P. Norton, V. Craciun, S. J. Pearton, F. Ren, and H. Shen, Appl. Phys. Lett. 93, 082102 (2008).
    [27] H. Kumomi, K. nomura, T. Kamiya, and H. Hosono, Thin Solid Films, vol. 516, no. 7, 1516-1522 (2008).
    [28] H. Klauk, M. Halik, U. Zschieschang, G. Schmid, and W. Radlik, J. Appl. Phys. 92, 5259 2002.
    [29] Kuo, Y. (ed.), Thin Film Transistors: Materials and Processes (Kluwer Academic, Dordrecht, 2004).
    [30] Taur, Y. & Ning, H. T. Fundamentals of Modern VLSI Devices (Cambridge Univ. Press, New York, 1988).
    [31] Carey, P. G., Smith, P. M. Theiss, S. D. &Wickboldt, P. Polysilicon, thin film transistors fabricated on low temperature plastic substrates. J. Vac. Sci. Technol. A 17, 1946–1949 (2000).
    [32] Kagan, C. R. & Andry, P. (eds), Thin Film Transistors (Marcel Dekker, New York, 2003).
    [33] Yang, C.-S., Smith, L. L. Arthur, C. B. & Parsons, G. N. Stability of low-temperature amorphous silicon thin film transistors formed on glass and transparent plastic substrates. J. Vac. Sci. Technol. B 18, 683–689 (2000).
    [34] Lee, J. H. et al. Pentacene thin film transistors fabricated on plastic substrates. Synth. Metals 139, 445–451 (2003).
    [35] Dimitrakopoulos, C. D. & Mascaro, D. J. Organic thin-film transistors: A review of recent advances. IBM J. Res. Dev. 45, 11–27 (2001).
    [36] Dimitrakopoulos, C. D. & Malenfant, P. R. L. Organic thin film transistors for large area electronics. Adv. Mater. 14, 99–117 (2002).
    [37] J.-H. Shin, J.-S. Lee, C.-S. Hwang, S.-H. K. Park, W.-S. Cheong, M. Ryu, C.-W. Byun, J.-I. Lee, and H. Y. Chu, ETRI J. 31, 62 (2009).
    [38] T.-C. Fung, C-.S. Chuang, K. Nomura, H.-P. D. Shieh, H. Hosono, and J.
    Kanicki, J. Information Display 9, 21 (2008).
    [39] K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko, Jpn. J. Appl. Phys. 48, 010203 (2009).
    [40] K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett. 95,
    013502 (2009).
    [41] M. E. Lopes, H. L. Gomes, M. C. R. Medeiros, P. Barquinha, L. Pereira, E. Fortunato, R. Martins, and I. Ferreira, Appl. Phys. Lett. 95, 063502 (2009).
    [42] P. Görrn, M. Lehnhardt, T. Riedl, and W. Kowalsky, Appl. Phys. Lett. 91, 193504 (2007).
    [43] J.-M. Lee, I.-T. Cho, J.-H. Lee, W.-S. Cheong, C.-S. Hwang, and H.-I.
    Kwon, Appl. Phys. Lett. 94, 222112 (2009).
    [44] A. Suresh and J. F. Muth, Appl. Phys. Lett. 92, 033502 (2008).

    Chapter 2
    [1] J. L. Vossen and W. Kern, Thin Flim Processes, Academic Press, New York, pp. 131 (1978).
    [2] C. Y. Chang and S.M. Sze, “ULSI Technology”, McGraw-Hill, New York, pp. 380 (1996).
    [3] S. I. Shah, Handbook of Thin Film Process Technology, Institute of Physics Pub, Bristol, UK, pp. A3.0:1 (1995).
    [4] 成大微奈米中心儀器設備介紹, “http://140.116.176.21/www/technique/instrument/JSM6700.htm“
    [5] B.D. Cullity, Elements of X-ray diffraction, 2nd ed, Addison Wesley, Canada, (1978).
    [6] Donald A. Neamen, Semiconductor physics and devices: basic principles-3rd ed., McGraw-Hill, New York, (2003)

    Chapter 3
    [1] Mitsuru Nakata, Kazushige Takechi, Kazufumi Azuma, Eisuke Tokumitsu, Hirotaka Yamaguchi, and Setsuo Kaneko, Applied Physics Express 2 (2009) 021102
    [2] Yutomo Kikuchi, Kenji Nomura, Hiroshi Yanagi, Toshio Kamiya, Masahiro Hirano, Hideo Hosono, Thin Solid Films 518 (2010) 3017–3021
    [3] Hideo Hosono, Journal of Non-Crystalline Solids 352 851–858 , Apr. 2006
    [4] M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. S. Park, J. K. Jeong, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett., vol. 90, pp. 212114 (3 pages), 2007.
    [5] A. Suresh and J. F. Muth, APPLIED PHYSICS LETTERS 92, 033502 (2008) , Janu. 2008
    [6] Jae Kyeong Jeong, Hui Won Yang, Jong Han Jeong, Yeon-Gon Mo, and Hye Dong Kim, APPLIED PHYSICS LETTERS 93, 123508 (2008) , Sept. 2008
    [7] Jin-Seong Park, Jae Kyeong Jeong, Hyun-Joong Chung, Yeon-Gon Mo, and Hye Dong Kim, APPLIED PHYSICS LETTERS 92, 072104 (2008) , Febr. 2008

    Chapter 4
    [1] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science, vol. 300, 1269–1271 (2003).
    [2] Y. Shimura, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films, vol. 516, 5899–5902, (2008).
    [3] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, vol. 432, 488–492, (2004).
    [4] K. Takechi, M. Nakata, K. Azuma, H. Yamaguchi, and S. Kaneko, IEEE Tran. Electron. Dev., vol. 56, 2165–2168, (2009).
    [5] Y. K. Moon, S. Lee, D. H. Kim, D. H. Lee, C. O. Jeong, and J. W. Park, Jpn. J. Appl. Phys., vol. 48, 031301, (2009).
    [6] W. Andreoni and C. A. Pignedoli, Appl. Phys. Lett., vol. 96, 062901, (2010).
    [7] G. S. Oehrlein, F. M. d’Heurle, and A. Reisman, J. Appl. Phys., vol. 55, 3715–3725, (1984).
    [8] R. J. Cava, J. J. Krajewski, W. F. Peck et al., J. Appl. Phys., vol. 80, 2346–2348, (1996).
    [9] C. Bartic, H. Jansen, A. Campitelli, and S. Borghs, Organic Electronics, vol. 3, 65–72, (2002).
    [10] C. Xu, Y. Qiang, Y. Zhu, J. Shao, Z. Fan, and J. Han, Optics & Laser Tech., vol. 42, 497–502, (2010).
    [11] Yeon-Keon Moon, Sih Lee, Jong-Wan Park, Do-Hyun Kim, Je-Hun Lee and Chang-Oh Jeong, J. Korean Phys Soc., Vol. 54, No. 1, 121 (2009).
    [12] Jaeyoung Park, I. Henins, H. W. Herrmann, and G. S. Selwyn, J. Appl. Phys. Vol 89, 15 (2001).
    [13] Jae Sang Lee, Seongpil Chang, Sang-Mo Koo, and Sang Yeol Lee, IEEE Electron Device Lett., Vol. 31, No. 3, (2010).
    [14] P. F. Carcia, R. S. McLean, M. H. Reilly, M. K Crawford, E. N. Blanchard, J. Appl. Phys., 102, 074512 (2007).
    [15] R. L. Hoffman, B. J. Norris, and J. F. Wager, Appl. Phys. Lett. 82, 733 (2003).
    [16] D. H. Kim, N. G. Cho, H. G. Kim, H. S. Kim, J. M. Hong, and I. D. Kim, Appl. Phys. Lett. 93, 032901 (2008).
    [17] J. H. Choi, U. B. Han, K. C. Lee, J. H. Lee, J. J. Kim, I. T. Cho, J. H. Lee, and Y. W. Heo, J. Vac. Sci. Technol. B 27, 622 (2009).
    [18] J. Y. Kwon, K. S. Son, J. S. Jung, T. S. Kim, M. K. Ryu, K. B. Park, B. W. Yoo, J. W. Kim, Y. G. Lee, K. C. Park, S. Y. Lee, and J. M. Kim, IEEE Electron Device Lett. 29, 1309 (2008).
    [19] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature London 432, 488 (2004).
    [20] J.F. Yuan, J.D. Zhang, J. Wang, D.H. Yan, W. Xu, Thin Solid Films 450 (2004) 316.
    [21] C. Bartic, H. Jansen, A. Campitelli, Org. Electron. 3 (2002) 65.
    [22] J.F. Yuan, J. Zhang, J. Wang, X.J. Yan, D.H. Yan, W. Xu, Appl. Phys. Lett. 82 (2003) 3967.
    [23] Y. Zhao, G.F. Dong, L.D. Wang, Y. Qiu, Appl. Phys. Lett. 90 (2007) 252110.
    [24] J. Tate, J.A. Rogers, C.D.W. Jones, B. Vyas, D.W. Murphy, W.J. Li, Z.A. Bao, R.E. Slusher, A. Dodabalapur, H.E. Katz, Langmuir 16 (2000) 6054.

    Chapter 5
    [1] Hideo Hosono, J. Non-Cryst. Solids 352, 851–858 (2006).
    [2] Mitsuru Nakata, Kazushige Takechi, Toshimasa Eguchi,Eisuke Tokumitsu, Hirotaka Yamaguchi, Jpn. J. Appl. Phys. 48, 081607 (2009).
    [3] Kazushige Takechi et al, Jpn. J. Appl. Phys. 48, 011301 (2009).
    [4] Kenji Nomura, Hiromichi Ohta, Akihiro Takagi, Toshio Kamiya, Masahiro Hirano and Hideo Hosono, Nature, Vol 432, (2004).
    [5] J. B. Kim, C. Fuentes-Hernandez, and B. Kippelen, Appl. Phys. 93, 242111 (2008).
    [6] J. B. Kim, C. Fuentes-Hernandez, W. J. Potscavage, Jr., X.-H. Zhang, and B. Kippelen, Appl. Phys. 94, 142107 (2009).
    [7] Young-Je Cho, Ji-Hoon Shin, S.M. Bobade, Young-Bae Kim, Duck-Kyun Choi, Thin Solid Films 517, 4115–4118 (2009).
    [8] Hagen Klauk, Marcus Halik, Ute Zschieschang, Gunter Schmid, and Wolfgang Radlik, Werner Weber, J. Appl. Phys. Vol 92, 9, (2002).
    [9 ]Kimoon Lee, Jae Hoon Kim, Seongil Im, Chang Su Kim and Hong Koo Baik, Appl. Phys. Lett. 89, 133507 (2006).
    [10] Seokhwan Bang, Seungjun Lee, Sunyeol Jeon, Semyung Kwon, Wooho Jeong, Honggyu Kim, Iksup Shin, Ho Jung Chang, Hyung-ho Park and Hyeongtag Jeon, Semicond. Sci. Technol. 24, 025008 (2009).
    [11] Jang Y, Kim DH, Park YD, Cho JH, Hwang M, Cho KW,Appl. Phys. Lett., 87, 152105 (2005).
    [12] B. Crone, A. Dodabalapur, Y.Y. Lin, R.W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H.E. Katz, W. Li, Nature 403 (2000) 521.
    [13] G. Horowitz, Adv. Mater. 10 (1998) 365.
    [14] T.-C. Fung, C-.S. Chuang, K. Nomura, H.-P. D. Shieh, H. Hosono, and J.
    Kanicki, J. Information Display 9, 21 (2008).
    [15] A. Suresh and J. F. Muth, Appl. Phys. Lett. 92, 033502 (2008).
    [16] K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett. 95,
    013502 (2009).
    [17] J.-M. Lee, I.-T. Cho, J.-H. Lee, W.-S. Cheong, C.-S. Hwang, and H.-I.
    Kwon, Appl. Phys. Lett. 94, 222112 (2009).
    [18] J.-H. Shin, J.-S. Lee, C.-S. Hwang, S.-H. K. Park, W.-S. Cheong, M. Ryu, C.-W. Byun, J.-I. Lee, and H. Y. Chu, ETRI J. 31, 62 (2009).
    [19] P. Görrn, M. Lehnhardt, T. Riedl, and W. Kowalsky, Appl. Phys. Lett. 91, 193504 (2007).
    [20] J. Lee, J.-S. Park, Y. S. Pyo, D. B. Lee, E. H. Kim, D. Stryakhilev, T. W.
    Kim, D. U. Jin, and Y.-G. Mo, Appl. Phys. Lett. 95, 123502 (2009).
    [21] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M and Hosono H, 2004 Nature 432 488.
    [22] Sangyun Lee, Bonwon Koo, Joonghan Shin, Eunkyong Lee, Hyunjeong Park, APPLIED PHYSICS LETTERS 88, 162109 (2006).
    [23] Sang Chul Lim, Seong Hyun Kim, Jae Bon Koo, Jung Hun Lee, Chan Hoe Ku, Yong Suk Yang, and Taehyoung Zyung, APPLIED PHYSICS LETTERS 90, 173512 (2007).
    [24] C. Ucurum, H. Goebel, F. A. Yildirim, W. Bauhofer and W. Krautschneider, JOURNAL OF APPLIED PHYSICS 104, 084501 (2008).
    [25] Cheon An Lee,a_ Dong Wook Park, Sung Hun Jin, Il Han Park, Jong Duk Lee, APPLIED PHYSICS LETTERS 88, 252102 (2006).

    Chapter 6
    [1] Patrick Wellenius, Arun Suresh, Haojun Luo, Leda M. Lunardi, and John F. Muth, J. of Display Tech., Vol. 5, No. 12, (2009).
    [2] Mitsuru Nakata, Kazushige Takechi, Toshimasa Eguchi, Eisuke Tokumitsu, Hirotaka Yamaguchi, and Setsuo Kaneko, Jpn. J. Appl. Phys. 48, 081607 (2009).
    [3] Arun Suresh, Patrick Wellenius, Vinay Baliga, Haojun Luo, Leda M. Lunardi, and John F. Muth, IEEE Electron Device Lett., Vol. 56, No. 7, (2009).
    [4] Arun Suresh, Patrick Wellenius, Vinay Baliga, Haojun Luo, Leda M. Lunardi, and John F. Muth, IEEE Electron Device Lett., Vol. 31, No. 4, 317 (2010)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE