簡易檢索 / 詳目顯示

研究生: 童丞逸
Tung, Cheng-Yi
論文名稱: 探討感染白點症病毒感染後蝦血細胞的醣解作用及穀醯胺酸分解作用代謝流模型
A metabolic flux model of glycolysis and glutaminolysis in shrimp hemocytes after white spot syndrome virus infection
指導教授: 王涵青
Wang, Han-Ching
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 74
中文關鍵詞: 白點症病毒瓦氏效應代謝流醣解作用穀醯胺酸分解作用
外文關鍵詞: White spot syndrome virus, Warburg effect, metabolic flux, Glycolysis, Glutaminolysis
相關次數: 點閱:157下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 白點症病毒(White spot syndrome virus,WSSV) 對於蝦類養殖產業造成嚴重的經濟損失,因此了解其致病機制更顯重要。先前實驗室的研究中發現白點症病毒會在感染12小時 (12 hpi) 促使瓦氏效應(Warburg effect)和穀醯胺酸分解作用 (glutaminolysis) ,而這些現象會在感染24小時 (24 hpi) 停止。在本篇研究當中,利用13C代謝流分析 (metabolic flux analysis) 釐清感染白點症病毒蝦血細胞內整體代謝物以及代謝流的改變。在感染白點症病毒12及24小時,白蝦會被注射穩定同位素標定碳追蹤物 (stable isotopic tracer)追蹤,採集蝦血細胞並利用液相層析串聯質譜儀(LC-ESI-MS)分析其代謝物。在感染白點症12小時,利用U-13C6 glucose進行追蹤,發現醣解作用中帶有13C的相關代謝物含量並且其生產速率會提升,而檸檬酸循環中則沒有顯著增加;利用U-13C5 glutamine進行追蹤,發現檸檬酸循環中帶有13C的相關代謝物含量及生產速率都會提升。在感染白點症24小時,利用U-13C6 glucose進行追蹤,發現醣解作用中則沒有顯著增加。從以上得知,在感染白點症12小時,瓦氏效應會驅使醣解作用的代謝流會增加並且促使穀醯胺酸分解作用的代謝流增加,並會利用穀醯胺酸當作葡萄糖外的碳源。

    Since the white spot syndrome virus (WSSV) causes serious economic losses, it is important to elucidate its pathogenesis. It has been reported that WSSV induced a Warburg-like effect and glutaminolysis in shrimp at 12 h after infection (hpi), although these phenomena had ceased by 24 hpi. In this study, 13C metabolic flux analysis was used to characterize cellular metabolic states and metabolic fluxes in WSSV-infected hemocytes. At 12 and 24 hpi, white shrimp were treated with uniquely labeled isotopic tracers, hemocytes were collected and liquid chromatography–electrospray ionization-tandem mass spectrometry (LC–ESI-MS) was used to analyze metabolites. At the genome replication stage (12 hpi), using U-13C6 glucose as a tracer, amounts of isotopic labeled glucose-derived intermediates in glycolysis were increased and corresponding production rates were faster than in the control group, although there was no enhancement of the TCA cycle. Using U-13C5 glutamine as a tracer, amounts and production rates of isotopic-labeled intermediates in the TCA cycle were both increased. At the late stage of infection (24 hpi), using U-13C6 glucose as the tracer, enhancement of glycolysis was no longer apparent. Taken together, at the WSSV genome replication stage (12 hpi), high levels of glycolytic intermediates were causing a Warburg effect by triggering glycolysis. In addition, glutaminolysis was also enhanced, providing an alternate carbon source for a glucose-independent TCA cycle.

    中文摘要 I 英文摘要 II 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 縮寫表 XII 一、研究背景 1 1-1白點症病毒與蝦類養殖之背景 1 1-2白點症病毒和瓦氏效應之關聯性 2 1-3系統生物學對於白點症病毒和癌細胞之重要性 4 1-4研究目的 9 二、材料與方法 11 2-1實驗用病毒、感染實驗以及動物來源 11 2-2利用LC-ESI-MS代謝體學平台資料分析蝦血細胞穩定同位素 代謝物含量 12 2-3對於感染白點症病毒後病毒複製變化分析 16 2-4統計分析方法 17 三、結果 20 3-1感染白點症病毒12小時的宿主細胞整體代謝物的變化 20 3-2感染白點症病毒24小時的宿主細胞整體代謝物的變化 26 3-3感染白點症病毒後蝦血細胞整體代謝流的變化 29 四、討論 32 參考文獻 42 圖表 48

    李春媛,探討穀醯胺酸分解作用於白點症病毒致病機轉之角色,國立成功大學生物科技研究所碩士論文,2015。

    蘇美安,雷帕黴素標靶蛋白訊息傳遞路徑在白點症病毒之致病機轉中所扮演的腳色,國立成功大學生物科技研究所碩士論文,2013。

    Buescher, J. M., Antoniewicz, M. R., Boros, L. G., Burgess, S. C., Brunengraber, H., Clish, C. B., DeBerardinis, R. J., Feron, O., Frezza, C., Ghesquiere, B., Gottlieb, E., Hiller, K., Jones, R.G., Kamphorst, J. J., Kibbey, R. G., Kimmelman, A. C., Locasale, J. W., Lunt, S.Y., Maddocks, O. D., Malloy, C., Metallo, C. M., Meuillet, E. J., Munger, J., Nöh, K., Rabinowitz, J. D., Ralser, M., Sauer, U., Stephanopoulos, G., St-Pierre, J., Tennant, D. A., Wittmann, C., Vander Heiden, M. G., Vazquez, A., Vousden, K., Young, J. D., Zamboni, N. and Fendt, S. M. A roadmap for interpreting 13C metabolite labeling patterns from cells. Current Opinion in Biotechnology 34, 189-201, 2015.

    Cairns, R. A., Harris, I. S. and Mak, T. W. Regulation of cancer cell metabolism. Nature Reviews Cancer 11, 85-95, 2011.

    Chambers, J.W., Maguire, T.G. and Alwine, J. C. Glutamine Metabolism Is Essential for Human Cytomegalovirus Infection. Journal of Virology 4, 1867-1873, 2010.

    Chen, I. T., Aoki, T., Huang, Y. T., Hirono, I., Chen, T. C., Huang, J. Y., Chang, G. D., Lo, C. F. and Wang, H. C. White spot syndrome virus induces metabolic changes resembling the warburg effect in shrimp hemocytes in the early stage of infection. Journal of Virology 85, 12919-12928, 2011.

    Dalziel, K. and Londesborough, J. C. The mechanisms of reductive carboxylation reactions. Carbon dioxide or bicarbonate as substrate of nicotinamide-adenine dinucleotide phosphate-linked isocitrate dehydrogenase and malic enzyme. Biochemical Journal 110, 223-230, 1968.

    Dang, C. V. Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Research 70, 859-862, 2010.

    Darekar, S., Georgiou, K., Yurchenko, M., Yenamandra, S. P., Chachami, G., Simos, G., Klein, G. and Kashuba, E. Epstein-Barr virus immortalization of human B-cells leads to stabilization of hypoxia-induced factor 1 alpha, congruent with the Warburg effect. PLoS One 7, e42072, 2012.

    DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S. and Thompson, C. B. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proceedings of the National Academy of Sciences of the United States of America 104, 19345-19350, 2007.

    Delgado, T., Carroll, P. A., Punjabi, A. S., Margineantu, D., Hockenbery, D. M. and Lagunoff, M. Induction of the Warburg effect by Kaposi's sarcoma herpesvirus is required for the maintenance of latently infected endothelial cells. Proceedings of the National Academy of Sciences of the United States of America 107, 10696-10701, 2010.

    Diamond, D. L., Syder, A. J., Jacobs, J. M., Sorensen, C. M., Walters, K. A., Proll, S. C., McDermott, J. E., Gritsenko, M. A., Zhang, Q., Zhao, R., Metz, T. O., Camp, D. G., Waters, K. M., Smith, R. D., Rice, C. M. and Katze, M. G. Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics. PLoS Pathogens 6, e1000719, 2010.

    Fan, T. W. -M., Yuan, P., Lane, A. N., Higashi, R. M., Wang, Y., Hamidi, A., Zhou, R., Guitart-Navarro, X., Chen, G., Manji, H. K. and Kaddurah-Daouk, R. Stable isotope resolved metabolomic analysis of lithium effects on glial-neuronal interactions. Metabolomics 6, 165-179, 2010.

    Filipp, F. V., Scott, D. A., Ronai, Z. A., Osterman, A. L. and Smith, J. W. Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells. Pigment Cell and Melanoma Research 25, 375-383, 2012.

    Gaglio, D., Metallo, C. M., Gameiro, P. A., Hiller, K., Danna, L. S., Balestrieri, C., Alberghina, L., Stephanopoulos, G. and Chiaradonna, F. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Molecular Systems Biology 7, 523, 2011.

    Guo, Y., Meng, X., Ma, J., Zheng, Y., Wang, Q., Wang, Y. and Shang, H. Human papillomavirus 16 E6 contributes HIF-1α induced Warburg effect by attenuating the VHL-HIF-1α interaction. International Journal of Molecular Sciences 15, 7974-7986, 2014.

    Hsueh, Y. S. The transformation of taiwan into the Empire of the Giant Tiger Prawn (1968-1988): The Roles of the Government and the People. Bulletin of Academia Historica 24, 139-176, 2010.

    Keibler, M. A., Fendt, S. M. and Stephanopoulos, G. Expanding the Concepts and Tools of Metabolic Engineering to Elucidate Cancer Metabolism. Biotechnology Progress 28, 1409-1418, 2012.

    Kim, J. W. and Dang, C. V. Cancer's molecular sweet tooth and the Warburg effect. Cancer Research 66, 8927-8930, 2006.

    Koppenol, W. H., Bounds, P. L. and Dang, C. V. Otto Warburg’s contributions to current concepts of cancer metabolism. Nature Reviews Cancer 11, 325-337, 2011.

    Kitano, H. Systems biology: a brief overview. Science 295, 1662-1664, 2002.

    Leu, J. H., Chang, C. C., Wu, J. L., Hsu, C. W., Hirono, I., Aoki, T., Juan, H. F., Lo, C. F., Kou, G. H. and Huang, H. C. Comparative analysis of differentially expressed genes in normal and white spot syndrome virus infected Penaeus monodon. Biomed Central Genomics 8, 120, 2007.

    Le, A., Lane, A. N., Hamaker, M., Bose, S., Gouw, A., Barbi, J., Tsukamoto, T., Rojas, C. J., Slusher, B. S., Zhang, H., Zimmerman, L. J., Liebler, D. C., Slebos, R. J., Lorkiewicz, P. K., Higashi, R. M., Fan, T. W. and Dang, C. V. Glucose-Independent Glutamine Metabolism via TCA Cycling for Proliferation and Survival in B Cells. Cell Metabolism 15, 110-121, 2011.

    Li, C. Y., Wang, Y. J., Huang, S. W., Cheng, C. S. and Wang, H. C. Replication of the Shrimp Virus WSSV Depends on Glutamate-Driven Anaplerosis. PLoS One 11, e0146902, 2016.

    Lo, C. F., Ho, C. H., Peng, S. E., Chen, C. H., Hsu, H. C., Chiu, Y. L., Chang, C. F., Liu, K. F., Su, M. S., Wang, C. H. and Kou, G. H. White spot syndrome baculovirus (WSBV) detected in cultured and captured shrimp, crabs and other arthropods. Diseases of Aquatic Organisms 27, 215-225, 1996.

    Metallo, C. M., Walther, J. L. and Stephanonpoulos, G. Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. Journal of Biotechnology 144, 167-174, 2009.

    Metallo, C. M., Gameiro, P. A., Bell, E. L., Mattaini, K. R., Yang, J. J., Hiller, K., Jewell, C. M., Johnson, Z. R., Irvine, D. J., Guarente, L., Kelleher, J. K., Vander Heiden, M. G., Iliopoulos, O. and Stephanopoulos, G. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380-384, 2011.

    Munger, J., Bajad, S. U., Coller, H. A., Shenk, T. and Rabinowitz, J. D. Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathogens 2, e132, 2006.

    Munger, J., Bennett, B. D., Parikh, A., Feng, X. J., McArdle, J., Rabitz, H. A., Shenk, T. and Rabinowitz, J. D. Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nature Biotechnology 26, 1179-1186, 2008.

    Peter, C. and Liao, I. C. The practice of grass prawn (Penaeus monodon) culture in Taiwan from 1968 to 1984. Journal of the World Aquaculture Society 10, 1749-7345, 1985.

    Radzig, A. A. and Smirnov, B. M. Isotopic Composition, Atomic Mass Table and Atomic Weights of the Elements. Reference data on atoms, molecules, and ions, Springer Science and Business Media, Germany, 19-43, 2012.

    Ramos-Montoya, A., Lee, W. N., Bassilian, S., Lim, S., Trebukhina, R. V., Kazhyna, M. V., Ciudad, C. J., Noé, V., Centelles, J. J. and Cascante, M. .Pentose phosphate cycle oxidative and nonoxidative balance: A new vulnerable target for overcoming drug resistance in cancer. International Journal of Cancer 119, 2733-2741, 2006.

    Sánchez-Paz, A. White spot syndrome virus: an overview on an emergent concern. Veterinary Research 41, 43, 2010.

    Sanchez, E. L., Carroll, P. A., Thalhofer, A. B. and Lagunoff, M. Latent KSHV Infected Endothelial Cells Are Glutamine Addicted and Require Glutaminolysis for Survival. PLoS Pathogens 11, e1005052, 2015.

    Sauer U. Metabolic networks in motion: 13C-based flux analysis. Molecular Systems Biology 2, 62, 2006.

    Shanware, N. P., Mullen, A. R., DeBerardinis, R. J. and Abraham, R. T. Glutamine: pleiotropic roles in tumor growth and stress resistance. Journal of Molecular Medicine 89, 229-236, 2011.

    Son, J., Lyssiotis, C. A., Ying, H., Wang, X., Hua, S., Ligorio, M., Perera, R. M., Ferrone, C. R., Mullarky, E., Shyh-Chang, N., Kang, Y., Fleming, J. B., Bardeesy, N., Asara, J. M., Haigis, M. C., DePinho, R. A., Cantley, L. C. and Kimmelman, A. C. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101-105, 2013.

    Su, M. A., Huang, Y. T., Chen, I. T., Lee, D. Y., Hsieh, Y. C., Li, C. Y., Ng, T. H., Liang, S. Y., Lin, Huang, S. W., Chiang, Y. A., Yu, H. T., Khoo, K. H., Chang, G. D., Lo, C. F. and Wang, H. C. An invertebrate Warburg Effect: a shrimp virus achieves successful replication by altering the host metabolome via the PI3K-Akt-mTOR pathway. PLoS Pathogens 10, e1004196, 2014.

    Tang, Y. J., Martin, H. G., Myers, S., Rodriguez, S., Baidoo, E. E. and Keasling, J. D. Advances in analysis of microbial metabolic fluxes via 13C isotopic labeling. Mass Spectrometry Reviews 28, 362-375, 2008.

    Vander Heiden, M. G., IIiopoulos, O. and Stephanopoulos, G. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380-384, 2012.

    Vander Heiden, M. G., Cantley, L. C. and Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033, 2009.

    Vastag, L., Koyuncu, E., Grady, S. L., Shenk, T. E. and Rabinowitz, J. D. Divergent effects of human cytomegalovirus and herpes simplex virus-1 on cellular metabolism. PLoS Pathogens 7, e1002124, 2011.

    Wang, H. C., Lin, A. T., Yii, D. M., Chang, Y. S., Kou, G. H. and Lo, C. F. DNA microarrays of the white spot syndrome virus genome: genes expressed in the gills of infected shrimp. Marine Biotechnology 6, 106-111, 2004.

    Warburg, O. On the origin of cancer cells. Science 123, 309-314, 1956.

    Wise, D. R., DeBerardinis, R. J., Mancuso, A., Sayed, N., Zhang, X. Y., Pfeiffer, H. K., Nissim, I., Daikhin, E., Yudkoff, M., McMahon, S. B. and Thompson, C. B. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proceedings of the National Academy of Sciences of the United States of America 105, 18782-18787, 2008.

    Wittmann, C. Fluxome analysis using GC-MS. Microbial Cell Factories 6, 6, 2007.

    Yang, L., Kasumov, T., Kombu, R. S., Zhu, S. H., Cendrowski, A. V., David, F., Anderson, V. E., Kelleher, J. K. and Brunengraber, H. Metabolomic and mass isotopomer analysis of liver gluconeogenesis and citric acid cycle: II. Heterogeneity of metabolite labeling pattern. The Journal of Biological Chemistry 283, 21988-21996, 2008.

    Yoo, H., Antoniewicz, M. R., Stephanopoulos, G. and Kelleher, J. K. Quantifying reductive carboxylation flux of glutamine to lipid in a brown adipocyte cell line. The Journal of Biological Chemistry 283, 20621-20627, 2008.

    Yu, Y., Clippinger, A. J. and Alwine, J. C. Viral effects on metabolism: changes in glucose and glutamine utilization during human cytomegalovirus infection. Trends in Microbiology 19, 360-367, 2011.

    Yuneva, M. O., Fan, T. W., Allen, T. D., Higashi, R. M., Ferraris, D. V., Tsukamoto, T., Matés, J. M., Alonso, F. J., Wang, C., Seo, Y., Chen, X. and Bishop, J. M. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metabolism 15, 157-170, 2012.

    無法下載圖示 校內:2022-08-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE