簡易檢索 / 詳目顯示

研究生: 陳銘男
Chen, Ming-Nan
論文名稱: 構建計數值量測系統精確度之統計評估模式
Developing the precision evaluation models of attribute measurement system by statistical methods
指導教授: 呂執中
Lyu, Jr-Jung
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 86
中文關鍵詞: 計數值資料重複性重現性E-M法則廣義線性模式
外文關鍵詞: measurement system analysis, attribute data, repeatability, reproducibility, generalized linear models, E-M algorithm
相關次數: 點閱:117下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 製程變異的降低在製造業的管理扮演一關鍵的角色。許多文獻指出品質系統設計及品質技術使用是降低製程變異的重要工具,然而品質計畫中量測精確度(precision)對於品質系統良窳有著舉足輕重的地位。量測系統通常使用重複性及重現性(Repeatability & Reproducibility, R&R)統計量以確認量測系統之精確度。重複性及重現性之評估通常透過標準的指導方針與作業程序以有效地確保量測資料之可靠度,並有助於製程變異監測及品質改善方案的執行。目前國際標準對於計量值量測系統精確度評估有一套標準作法與作業程序,相關之學術研究也相當完整且豐富,但對於計數值量測系統精確度評估之標準作法與作業程序則較為不足,相關研究亦較為匱乏。
    本研究針對一般之離散值量測資料,整合不完全資料之E-M (Expectation Maximization)法則與完全資料之廣義線性模式(generalized linear models, GLMs)、疊代加權最小平方法(iterative weighted least square, IWLS )等方法,估計量測參數之最大概似估計量(maximum likelihood estimator, MLE ),以連絡函數之線性預估量與重複性建立重複性變異估計公式。為分析量測系統間變異成分,本研究亦以數學方法推導出一套估計量測系統間變異之法則,再以重現性定義推算重現性變異。最後以精確度評估準則,構建一套計數值量測系統之精確度評估模式。
    研究結果顯示,單變量離散值資料可以GLM建立指數家族分配之統計量及本體連絡函數之線性預估量,再以IWLS估計量測參數,然而單變量離散值資料因隨機衝擊所產生零值膨脹(zero-inflated)之不完全資料問題,則以E-M法則之E步驟建立量測參數對數概似估計量之期望值,M步驟找出E步驟之最大值,以得到量測參數MLE。雙變量離散值資料可以GLM建立雙變量指數家族分配之統計量及本體連絡函數之線性預估量,再以IWLS估計量測參數,然而由於高附加價值製程及量測精密度不足所造成資料群聚效應,可以GLM建立卜瓦松分配-卜瓦松分配之統計量及本體連絡函數之線性預估量,再以IWLS估計量測參數。本研究亦透過實證研究以驗證所提出量測系統精確度評估模式,以提供產業評估量測品質與量測系統發展之參考。

    Reducing the process variability plays an important role in many manufacturing organizations. Therefore, it is essential to develop a quality system and to utilize quality techniques in order to reduce the process variability as shown in the literature. Quality programs, which are corresponding to the degree of measurement precision, are fundamental to the quality system. The common program assessing the precision of measurement system is the repeatability and reproducibility (R&R) study. The R&R study program is a highly effective means of adopting standard guidelines to ensure reliability of measurement data. Such accurate data can be applied when monitoring process variability and implementing quality improvement initiatives. The general scheme for assessing variable measurement system precision has guidelines and procedures in international standards, and has been studied in extensively academia. However, the R&R study for attribute data has not been thoroughly investigated and requires guidelines.
    This research presents statistical methods to evaluate precision for the attribute measurement system. Meanwhile, the E-M (Expectation Maximization) algorithm, generalized linear models (GLM), and iterative weighted least square (IWLS) method are applied to estimate maximum likelihood estimators (MLE) of measurement parameters that can be adopted to calculate the repeatability variance, and the proposed mathematical model is used to compute the variance between measurement systems. According to the above-mentioned variance and the definition of reproducibility variance, this study proposes a novel method to evaluate the precision of general attribute measurement system.
    This study shows that uni-variate discrete data can use GLM to get the statistics of exponentially family of distributions, linear predictor of identity link function and then IWLS is adopted to estimate measurement parameters. However, uni-variate discrete data subject to random shocks with incomplete-data problem of zero-inflation can utilize the E-step of E-M algorithm to calculate the expectation of complete-data log likelihood function for measurement parameters. The M-step requires the maximization of E-step with respect to measurement parameters over the parameter space. The bivariate discrete data can use GLM to get the statistics of bivariate exponentially family of distributions, linear predictor of identity link function and then IWLS is adopted to estimate measurement parameters. Due to high value-added processes and poor measurement capability, the bivariate discrete data has clustered effect and can utilized GLM to generate the statistics of Poisson-Poisson, linear predictor of identity link function and then IWLS is adopted to estimate measurement parameters. Based on the proposed methodology, this investigation can meet the practical measurement results and manufacturing cases can be utilized to demonstrate the process and potential of this proposed model. This research can be viewed as the reference model for the evaluation of measurement systems with attribute data. Moreover, the analysis results are also insightful for the quality practitioners to improve their measurement systems effectively.

    摘要................................................................................................................................. I ABSTRACT ...................................................................................................................II 誌謝................................................................................................................................IV 目錄................................................................................................................................V 圖目錄.......................................................................................................................... VII 表目錄........................................................................................................................ VIII 符號................................................................................................................................IX 第一章 緒論 1 第一節 研究動機 1 第二節 研究目的 2 第三節 研究範圍與假設 3 第四節 研究流程與方法 4 第二章 文獻探討 6 第一節 量測系統重複性與重現性之定義 6 第二節 計量值量測精確度 10 第三節 計數值量測精確度 12 第四節 計數值量測系統型態 14 第五節 分析計數值資料變異成分方法 17 第六節 量測能力評估準則 20 第三章 計數值量測系統之建構 21 第一節 計數值量測系統模式架構 21 第二節 計數值量測系統評估模式之流程 24 第三節 以E-M與GLM建立量測參數之最大概似估計量 27 第四節 計數值資料常見之機率分配與統計量 29 第五節 量測系統內重複性變異之估計 36 第六節 量測系統間變異之估計 37 第七節 量測系統重現性變異之估計 39 第八節 量測系統精確度評估準則 40 第九節 討論 41 第四章 單變量離散值量測評估模式 43 第一節 實例介紹 43 第二節 單變量離散值量測評估模式架構 46 第三節 單變量離散值量測評估模式應用 48 第四節 討論 50 第五章 雙變量離散值量測評估模式 52 第一節 實例介紹 52 第二節 雙變量離散值量測評估模式架構 54 第三節 雙變量離散值量測評估模式應用 56 第四節 討論 58 第六章 結論與建議 60 第一節 結論 60 第二節 建議 61 參考文獻 63 附錄一 零值膨脹離散值量測評估模式 72 附錄二 群聚離散值量測評估模式 80 附錄三 目前著作 85 自 述 86

    1.Albin, S.L. and Friedman, D.J., “The impact of clustered defect distributions in IC Fabrication,” Management Science, 35(9), 1066-1078, 1989.
    2.American Society for Testing and Materials (ASTM). ASTM E 45—Determining the Inclusion Content of Steel. ASTM: West Conshohocken, PA, 1998.
    3.American Society for Testing and Materials (ASTM). ASTM E 456 — Standard Terminology for Relating to Quality and Statistics. ASTM: West Conshohocken, PA, 1996.
    4.American Society for Testing and Materials (ASTM). ASTM E 691 — Standard Practice for Conducting an Inter-laboratory Study to Determine the Precision of a Test Method. ASTM: West Conshohocken, PA, 1999.
    5.American Society for Testing and Materials (ASTM). ASTM F 1469 - 99 (Re-approved 2004) - Standard Guide for Conducting a Repeatability and Reproducibility Study on Test Equipment for Nondestructive Testing. ASTM: West Conshohocken, PA, 2004.
    6.American Society for Testing and Materials (ASTM). ASTM E 177 — Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods. ASTM: West Conshohocken, PA, 2004.
    7.Anderson, M.T., Greenberg, B.S. and Stokes, S.L., “Acceptance sampling with rectification when inspecting errors are present,” Journal of Quality Technology, 33(4), 493-505, 2001.
    8.Automotive Industry Action Group (AIAG). Measurement System Analysis Reference Manual (3rd edn). AIAG: Detroit, MI, 2002.
    9.Berkhout, P. and Plug, E., “A bivariate Poisson count data model using conditional probabilities,” Statistica Neerlandica, 58(3), 349-364, 2004.
    10.Blackman, N.J.M., “Reproducibility of clinical data II: categorical outcomes,” Pharmaceutical Statistics, 3, 109-122, 2004.
    11.Bohning, D., Dietz, E. and Schlattmann, P., “The zero-inflated Poisson model and the decayed, missing and filled teeth index in dental epidemiology,” Journal of Royal Statistical Society, 162(2), 195-209, 1999.
    12.Borror, C. M., Montgomery, D.C. and Runger, G. C., “Confidence intervals for variance components from gauge capability studies,” Quality and Reliability Engineering International, 13(6), 361–369, 1997.
    13.Boyles, R.A., “Gauge capability for pass-fail inspection,” Technometrics 43, 223-229, 2001.
    14.Burdick, R.K., Allen, A.E. and Larsen, G.A., “Comparing variability of two measurement processes using R&R studies,” Journal of Quality Technology, 34(1), 97–105, 2002.
    15.Burdick, R.K., Borror, C.M. and Montgomery, D.C., “A review of methods for measurement systems capability analysis,” Journal of Quality Technology, 35(4), 342-354, 2003.
    16.Burdick R.K., Borror C.M., Montgomery D.C.. Design and Analysis of Gauge R&R Studies: Making Decisions with Confidence Intervals in Random and Mixed ANOVA Models; ASA–SIAM: Philadelphia, PA, 2005.
    17.Burdick, R. K., Park, Y. J., Montgomery, D. C. and Borror, C. M., “Confidence intervals for misclassification rates in a gauge R&R study,” Journal of Quality Technology, 37(4), 294–303, 2005.
    18.Burke, R.J., Davis, R.D., Kaminsky, F.C. and Roberts, A.E.P., “The effects of inspection errors on the true fraction nonconforming: An industrial experiment,” Quality Engineering, 7, 543-550, 1995.
    19.Cacoullos, T. and Papageorgiou, H., “On some bivariate probability models applicable to traffic accidents and fatalities,” International Statistical Review, 48(3), 345–356, 1980.
    20.Chan, L.Y., Xie, M. and Goh, T.N., “Cumulative quantity control charts for monitoring production processes,” International Journal Production Research, 38(2), 397-408, 2000.
    21.Chan, L.Y., Lai, C.D., Xie, M. and Goh, T.N., “A two-stage decision procedure for monitoring processes with low fraction nonconforming,” European Journal of Operational Research, 150, 420-436, 2003.
    22.Chandrasekar, B. and Balakrishnan, N., “Property of bivariate Poisson distribution and its application to stochastic processes,” Statistics, 38(2), 161-165, 2004.
    23.Charnes, A., Frome, E.L., Yu, P.L., “The equivalence of generalized least squares and maximum likelihood estimates in the exponential family,” Journal of the American Statistical Association, 71, 169-171, 1976.
    24.Chen, K.S., Wu, C.H. and Chen, S.C, “Criteria of determining the P/T upper limits of GR&R in MSA,” Quality & Quantity, 42(1), 23–33, 2008.
    25.Cheung, Y.B. and Lam, K. F., “Bivariate Poisson–Poisson model of zero-inflated absenteeism data,” Statistics in Medicine, 25, 3707-3717, 2006.
    26.Daniels, L., Burdick, R. K., Quiroz, J., “Confidence intervals in a gauge R&R study with fixed operators,” Journal of Quality Technology, 37(3), 179–185, 2005.
    27.Danila, O, Steiner, S.H., Mackay, R.J., “Assessing a binary measurement system,” Journal of Quality Technology, 40(3), 310–318, 2008.
    28.De Bivre, P., “Measurement uncertainty is not synonym of measurement repeatability or measurement reproducibility...,” Accreditation and Quality Assurance, 13, 61–62, 2008.
    29.Del Castillo, E. and Rajagopal, R., “A multivariate double EWMA process adjustment scheme for drifting processes,” IIE Transactions, 34(12), 1055-1068, 2002.
    30.De Mast, J., “Agreement and kappa-type indices,” American Statistician, 61(2), 148–153, 2007.
    31.De Mast, J. and Trip, A., “Gauge R&R studies for destructive measurements,” Journal of Quality Technology, 37(1), 40–49, 2005.
    32.De Mast, J. and van Wieringen, W.N., “Measurement system analysis for bounded ordinal data,” Quality and Reliability Engineering International, 20(5), 383–395, 2004.
    33.De Mast, J. and Van Wieringen, W.N., “Measurement system analysis for categorical measurements: Agreement and kappa-type indices,” Journal of Quality Technology, 39(3), 191–202, 2007.
    34.Dempster, A.P., Laird, N.M., and Rubin, D.B., “Maximum likelihood from incomplete data via the EM algorithm (with discussion),” Journal of the Royal Statistical Society B, 39, 1–38, 1977.
    35.Dsenfant, M. and Priel, M., “Road map for measurement uncertainty evaluation,” Measurement, 39 (7), 841–848, 2006.
    36.Dobbie, M.J. and Welsh, A.H., “Modeling correlated zero-inflated count data,” Australian and New Zealand Journal of Statistics, 43(4), 431-444, 2001.
    37.Dobson, A.J., An Introduction to Generalized Linear Models; Chapman & Hall/CRC: Boca Raton, Florida, 2002.
    38.Dolezal, K.K. and Burdick, R.K., “Analysis of a two-factor R&R study with fixed operators,” Journal of Quality Technology, 30, 163-170, 1998.
    39.Drury, C.G., Maheswar, G., DAS, A. and Helandander, M.G., “Improving visual inspection using binocular rivalry,” International Journal of Production Research, 39, 2143-2153, 2001.
    40.Dyer, J.N., Conerly, M.D. and. Adams, B.M., “A Simulation study and evaluation of multivariate forecast based control charts applied to ARMA process,” Journal of Statistical Computation and Simulation, 73, 709–724, 2003.
    41.Escarela, G. and Carrire, J.F., “A bivariate model of claim frequencies and severities,” Journal of Applied Statistics, 33(8), 867–883, 2006.
    42.Gijo, E.V. and Perumallu, P.K., “Quality improvement by reducing variation: a case study,” Total Quality Management & Business Excellence, 14(9), 1023–1031, 2003.
    43.Gilder, K., Ting, N., Tian, L.L., Cappelleri, J.C. and Hanumara, R.C., “Confidence intervals on intraclass correlation coefficients in a balanced two-factor random design,” Journal of Statistical Planning and Inference, 137(4), 1199–1212, 2007.
    44.Gong, L. Y., Burdick, R. K. and Quiroz, J., “Confidence intervals for unbalanced two factor gauge R&R studies,” Quality and Reliability Engineering International, 21(8), 727–741, 2005.
    45.Grubbs, F.E., “Errors of measurement, precision, accuracy and the statistical comparison of measuring instruments,” Technometrics, 15(1), 53-66, 1973.
    46.Hall, D.B., “Zero-inflated Poisson and binomial regression with random effects: A case study,” Biometrics, 56, 1030-1039, 2000.
    47.Hall, D.B. and Zhang, Z., “Marginal models for zero inflated clustered data,” Statistical Modelling, 4, 161-180, 2004.
    48.Hamada, M. and Weerahandi, S., “Measurement system assessment via generalized inference,” Journal of Quality Technology, 32(3), 241–253, 2000.
    49.Hansen, C.K. and Thyregod, P., “Analysis of integrated circuit fault data using generalized linear models,” Quality and Reliability Engineering International, 16, 173-185, 2000.
    50.He, B., Xie, M., Goh, T.N. and Ranjan, P., “On the estimation error in zero-inflated Poisson model for process control,” International Journal of Reliability, Quality and Safety Engineering, 10(2), 159-169, 2003.
    51.Henderson, B. and Jarrett, R., “Models with errors due to misreported measurements,” Australian and New Zealand Journal of Statistics, 45, 431-444, 2003.
    52.Hills, S.L. and Davis, C.S., “A simple justification of the iterative fitting procedure for generalized linear models,” The American Statistician, 48, 288–289, 1994.
    53.Holgate, P., “Estimation for the bivariate Poisson distribution,” Biometrika, 51(1/2), 241-245, 1964.
    54.International Organization for Standardization, ISO/IEC 17025. General requirements for the competence of testing and calibration laboratories. ISO, Geneva, Switzerland, 2005.
    55.International Organization for Standardization, ISO 5725-2. Accuracy (trueness and precision) of measurement methods and results – Part 2: basic method for the determination of repeatability and reproducibility of a standard measurement method. ISO, Geneva, Switzerland, 1994.
    56.International Organization for Standardization, ISO/TS 21748. Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty estimation, ISO, Geneva, Switzerland, 2004.
    57.International Organization for Standardization. ISO/TS 16949:2002 Quality Management Systems — Particular Requirements for the Application of ISO 9001:2000 for Automotive Production and Relevant Service Part Organizations, ISO: Geneva, Switzerland, 2002.
    58.International Organization for Standardization. ISO 5725-1, Accuracy (trueness and precision) of Measurement Methods and Results-Part 1: General Principles and Definitions. ISO: Geneva, Switzerland, 1994.
    59.International Organization for Standardization. ISO/IEC Guide. International vocabulary of metrology – basic and general concepts and associated terms (VIM). ISO, Geneva, Switzerland, 2007.
    60.Iwasaki, M. and Tsubaki, H., “A new bivariate distribution in natural exponential family,” Metrika, 61, 323-336, 2005.
    61.Jearkpaporn, D., Montgomery, D.C., Runger, G.C. and Borror, C.M., “Process monitoring for correlated Gamma-distributed data using generalized-linear-model-based control charts,” Quality and Reliability Engineering International, 19, 477-491, 2003.
    62.Jearkpaporn, D., Montgomery, D.C., Runger, G.C. and Borror, C.M., “Model-based process monitoring using robust generalized linear models,” International Journal of Production Research, 43(7), 1337-1354, 2005.
    63.Johnson, N.L. and Kotz, S., Discrete distributions. John Wiley &Sons: New York, 1969.
    64.Johnson, N.L., Kotz, S. and Wu, X., Inspection Errors for Attributes in Quality Control. Chapman & Hall: London, 1991.
    65.Kim, Y.J., “Analysis of panel count data with measurement errors in the covariates,” Journal of Statistical Computation and Simulation, 77(2), 109-117, 2007.
    66.Knowles, G., Vickers, G. and Anthony, J., “Implementing evaluation of the measurement process in an automotive manufacturer: a case study,” Quality and Reliability Engineering International, 19, 397-410, 2003.
    67.Lambert, D., “Zero-inflated Poisson regression, with an application to defects in manufacturing,” Technometrics, 34(1), 1-14, 1992.
    68.Lai, C.D., Xie, M. and Govindaraju, K., “Study of a Markov model for a high-quality dependent process,” Journal of Applied Statistics, 27(4), 461-473, 2000.
    69.Lee, A.H., Wang, K., Yau, K.W., Carrivick, P.J.W. and Stevenson, M.R., “Modelling bivariate count series with excess zeros,” Mathematical Biosciences, 196, 226-237, 2005.
    70.Li, C.S., Lu, J.C., Park, J., Kim, K., Brinkley, B. and Peterson, J.P., “Multivariate zero-inflated Poisson Models and their applications,” Technometrics, 41(1), 29-38, 1999.
    71.Li, L., Palta, M. and Shao, J., “A measurement error model with a Poisson distributed surrogate,” Statistics in Medicine, 23, 2527-2536, 2004.
    72.Lyu, J.J. and Chen, M.N., “Gauge capability studies for attribute data,” Quality and Reliability Engineering International, 24(1), 71–82, 2008.
    73.Mandel, J., “Repeatability and reproducibility,” Journal of Quality Technology, 4(2), 74-85, 1972.
    74.Mandel, J., “The validation of measurement through interlaboratory studies,” Chemometrics and Intelligent Laboratory Systems, 11,109-119, 1991.
    75.Mandel, J., “Repeatability and reproducibility for pass/fail data,” Journal of Testing & Evaluation, 25(2), 151-153, 1997.
    76.McCullagh, P. and Nelder, J.A., Generalized Linear Models, 2nd ed. Chapman and Hall: London, 1989.
    77.McLachlan, G.J. and Krishnan, T., The EM algorithm and Extensions. Wiley: New York, 1997.
    78.Min, Y. and Agresti, A., “Random effect models for repeated measures of zero-inflated count data,” Statistical Modelling, 5, 1-19, 2005.
    79.Montgomery, D.C. and Runger, G.C., “Gauge capability and designed experiments. Part I: basic methods,” Quality Engineering, 6(1), 115-135, 1994.
    80.Montgomery, D.C. and Runger, G.C., “Gauge capability and designed experiments. Part II: experimental design models and variance component estimation,” Quality Engineering, 6(2), 289-305, 1994.
    81.Myers, R.H., Montgomery, D.C. and Vining, G.G., Generalized Linear Models with Applications in Engineering and the Sciences; John Wiley: New York, NY, 2002.
    82.Nelder, J.A., Wedderburn, R.W.M., “Generalized Linear Models,” Journal of the American Statistical Association, 135(3), 370-384, 1972.
    83.Ohta, H., Kusukawa, E. and Rahim, A., “A CCC-r chart for high-yield processes,” Quality and Reliability Engineering International, 17, 439-446, 2001.
    84.Pan, J.N., “Evaluating the gauge repeatability and reproducibility for different industries,” Quality & Quantity, 40(4), 499–518, 2006.
    85.Pauwels, J., van der Veen, A., Lamberty, A. and Schimmel, H., “Evaluation of uncertainty of reference materials,” Accreditation and Quality Assurance, 5(3): 95–99, 2000.
    86.Ranjan, P., Xie, M. and Goh, T.N., “Optimal control limits for CCC charts in the presence of inspection errors,” Quality and Reliability Engineering International, 19, 149-160, 2003.
    87.Reilly, F., “Accuracy, repeatability, reproducibility,” Metal Finishing, 102(5), 8–9, 2004.
    88.Reilly, F., “Understanding accuracy, repeatability and reproducibility,” Metal Finishing, 105(10), 537–538, 2007.
    89.Roy, S., Banerjee, T. and Maiti, T., “Measurement error model for misclassified binary responses,” Statistics in Medicine, 24, 269-283, 2005.
    90.Senol, S., “Measurement system analysis using designed experiments with minimum alpha-beta risks and n,” Measurement, 36(2), 131–141, 2004.
    91.Shiau, Y.R., “Repeatability/linearity study and measurement loss cost analysis of an automatic gauge,” International Journal of Advanced Manufacturing Technology, 20(8), 603–611, 2002.
    92.Skinner, K.R., Montgomery, D.C. and Runger, G.C., “Process monitoring for multiple count data using generalized linear model-based control charts,” International Journal of Production Research, 41(6), 1167-1180, 2003.
    93.Skinner, K.R., Montgomery, D.C. and Runger, G.C., “Process monitoring for multiple count data using generalized linear model-based control charts,” International Journal of Production Research, 41, 1167-1180, 2003.
    94.Skinner, K.R., Montgomery, D.C. and Runger, G.C., “Generalized linear model-based control chart for discrete semiconductor process data,” Quality and Reliability Engineering International, 20, 777-786, 2004.
    95.Stamey, J.D., Young, D.M. and Bratcher, T.L., “Bayesian sample-size determination for one and two Poisson rate parameters with applications to quality control,” Journal of Applied Statistics, 33(6), 583-594, 2006.
    96.Sun, J. and Zhang, G., “Control charts based on the number of consecutive conforming items between two successive nonconforming items for the near zero-nonconformity processes,” Total Quality Management & Business Excellence, 11(2), 235-250, 2000.
    97.Tang, L.C. and Cheong, W.T., “A control scheme for high-yield correlated production under group inspection,” Journal of Quality Technology, 38(1), 45-55, 2006.
    98.Thompson, M., “Uncertainty of sampling in chemical analysis,” Accreditation and Quality Assurance, 3(3), 117–121, 1998.
    99.Thompson, M., Mathieson, K., Damant, A.P. and Wood, R., “A general model for interlaboratory precision accounts for statistics from proficiency testing in food analysis,” Accreditation and Quality Assurance, 13(4-5), 223–230, 2008.
    100.Tong, L.I., Wang, C.H. and Huang, C.L., “Monitoring defects in IC fabrication using a Hotelling T2 control chart,” IEEE Transactions on Semiconductor Manufacturing, 18(1), 140-147, 2005.
    101.Tsung, F. and Apley, D.W., “The dynamic T2 chart for monitoring feedback-controlled processes,” IIE Transactions, 34(12), 1043-1053, 2002.
    102.Tu, W. and Piegorsch, W.W., “Empirical Bayes analysis for a hierarchical Poisson generalized linear model,” Journal of Statistical Planning and Inference, 111, 235-248, 2003.
    103.Van Wieringen, W.N. and van den Heuvel, E.R., “A comparison of methods for the evaluation of binary measurement system,” Quality Engineering, 17, 495–507, 2005.
    104.Vardeman, S.B. and VanValkenburg, E.S., “Two-way random-effects analyses and gauge R&R studies,” Technometrics, 41(3), 202–211, 1999.
    105.Voelkel, J.G., “Gauge R&R analysis for two-dimensional data with circular tolerances,” Journal of Quality Technology, 35(2), 153–167, 2003.
    106.Wang, F.K. and Eldon, Y.L., “Confidence intervals in repeatability and reproducibility using the Bootstrap method,” Total Quality Management & Business Excellence, 14(3), 341-354, 2003.
    107.Wang, K., Lee, A.H., Yau, K.W. and Carrivick, P.J.W., “A bivariate zero-inflated Poisson regression model to analyze occupational injuries,” Accident Analysis and Prevention, 35, 625-629, 2003.
    108.Woodall, W.H. and Borror, C.M., “Some relationships between gage R&R criteria,” Quality and Reliability Engineering International, 24(1), 99–106, 2008.
    109.Xie, M. and Goh, T.N., “SPC of a near zero-defect process subject to random shocks,” Quality and Reliability Engineering International, 9, 89-93, 1993.
    110.Xie, M., He, B. and Goh, T.N., “Zero-inflated Poisson model in statistical process control,” Computational Statistics & Data Analysis, 38, 191-201, 2001.

    下載圖示 校內:2010-11-25公開
    校外:2010-11-25公開
    QR CODE