簡易檢索 / 詳目顯示

研究生: 陳麒安
Chen, Chi-An
論文名稱: 反算法於三維內部空心體不規則形狀之預測
A Three-dimensional Inverse Geometry Problem In Estimating The Shape of An Irregular Internal Cavity
指導教授: 黃正弘
Huang, Cheng-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 69
中文關鍵詞: 空心體邊界形狀急遽遞減法熱傳反算問題
外文關鍵詞: cavity, boundary, Steepest Descent Method, heat transfer, inverse problem
相關次數: 點閱:106下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文透過急遽遞減法(Steppest Descent Method)與套裝軟體CFD-RC的結合,配合模擬紅外線溫度感測器所量測的模型外表面溫度值為參考,來預測模型內部不規則空心體的形狀。
    本論文以Fortran撰寫主程式搭配CFD-RC套裝軟體當作副程式進行數值模擬,套裝軟體CFD-RC裡的CFD-ACE+是一套工程模擬軟體,可以將系統和工程設備中的流體、熱學、化學、電、生物和機械現象聯合在一起進行模擬,優點是可以容易的設定模型的所有邊界條件還有自動產生網格的功能。
    本論文有兩個主題,其一為第二章的穩態熱傳導問題,模型內部空心體形狀不隨時間變化;另一個為第三章的暫態熱傳導問題,模型內部空心體形狀將隨時間與位置做變化。兩章均在探討利用反算法預測三維模型內部空心體的邊界形狀。物理模型皆為三维均勻材質,外表正立方體,內部空心體則為未知不規則幾何形狀。
    此外,吾人尚考慮不同內部形狀起始猜值與量測誤差,對上述方法於預測內部空心體邊界形狀的影響。

    A three-dimensional shape identification problem (or inverse geometry problem) in estimating the unknown irregular shape of internal cavity by using the steepest descent method (SDM) and a general purpose commercial code CFD-RC is examined in this study based on the simulated measured temperature distributions on the outer surface by the simulated infrared thermography.
    The commercial code CFD-RC can be applied to many engineering problems such as fluid flow、heat transfer、chemical reaction and electricity, etc. This code has the feature of auto meshing and it can be used to calculate many practical but difficult direct thermal problems.
    The present thesis has two themes, in chapter two the goal is to estimate the irregular configuration of an internal cavity in a steady-state problem, while in chapter three the objective is to estimate the time and position dependent internal cavity. The geometry of the outer boundary for all the examples considered in this thesis is taken as a cube.
    The numerical experiments are performed to test the validity and accuracy of the present shape identification algorithm by using different types of cavity shapes, initial guesses and measurement errors. Results show that excellent estimations on the unknown geometry of the internal cavity can be obtained.

    摘要 I 誌謝 III 目錄 IV 圖目錄 VI 符號說明 IX 第一章 緒論 1 1-1 研究背景與目的 1 1-2 文獻回顧 2 第二章 三維穩態內部空心體不規則邊界形狀的預測 5 2-1 直接解問題(Direct Problem) 6 2-2 逆向問題(Inverse Problem) 6 2-3 急遽遞減法的極小化過程(Steepest Descent Method For Minimization) 7 2-4 靈敏性問題與前進步距(Sensitivity Problem And Search Step Size) 8 2-5 伴隨問題與梯度方程式(Adjoint Problem And Gradient Equation) 10 2-6 收斂條件(Stopping Criterion) 12 2-7 數值計算流程(Computational Procedure) 12 2-8 結果與討論(Results And Discussions) 13 第三章 三維暫態內部空心體不規則邊界形狀的預測 32 3-1 直接解問題(Direct Problem) 33 3-2 逆向問題(Inverse Problem) 33 3-3 急遽遞減法的極小化過程(Steepest Descent Method For Minimization) 34 3-4 靈敏性問題與前進步距(Sensitivity Problem And Search Step Size) 35 3-5 伴隨問題與梯度方程式(Adjoint Problem And Gradient Equation) 37 3-6 收斂條件(Stopping Criterion) 40 3-7 數值計算流程(Computational Procedure) 40 3-8 結果與討論(Results And Discussions) 41 第四章 結語 65 參考文獻 66

    1. C. K. Hsieh and K. C. Su, A Methodology of Predicting Cavity Geometry Based on the Scanned Surface Temperature Data-Prescribed Surface Temperature at the Cavity Side, J. Heat Transfer, 102, No. 2(1980), 324-329.
    2. C. K. Hsieh and A. J. Kassab, A General Method for the Solution of Inverse Heat Conduction Problems with Partially Specified System Geometries, Int. J. Heat Mass Transfer, 29(1986), 47-58.
    3. A. J. Kassab and C. K. Hsieh, Application and Infrared Scanners and Inverse Heat Conduction Methods to Infrared Computerized Axial Tomography, Rev. Sci. Inst., 58(1987), 89-95.
    4. C. K. Hsieh, C. Y. Choi and K. M. Liu, A Domain Extension Method for Quantitative Detection of Cavities by Infrared Scanning, J. Nodes. Eval., 8(1989), 195-211.
    5. A. J. Kassab and J. Pollard, A Cubic Spline Anchored Grid Pattern Algorithm for High Resolution Detection of Subsurface Cavities by the IR-CAT Method, Num. Heat Transfer, Part B, 26 (1994), 63-78.
    6. K. Dems and Z. Mroz, Variational approach to sensitivity analysis in thermoelasticity, J. Thermal Stresses, 10(1987), 283–306.
    7. K. Dems and Z. Mroz , Sensitivity analysis and optimal design of external boundaries and interfaces for heat conduction systems , J. Thermal Stress, 21, No. 3-4(1998), 461-488.
    8. T. Burczinski, J. H. Kane and C. Balakrishna, Shape Design Sensitivity Analysis via Material Derivative-Adjoint Variable Technique for 3D and 2D Curved Boundary Elements, Int. J. Numer. Meth. Eng., 38 (1995), 2839–2866.
    9. T. Burczynski, W. Beluch, A. Dlugosz, W. Kus, M. Nowakowski and P. Orantek, Evolutionary Computation in Optimization and Identification, Comput. Assist. Mech. Eng. Sci., 9(2002), 3–20.
    10. C. H. Cheng and C. Y. Wu, An Approach Combining Body-Fitted Grid Generation and Conjugate Gradient Methods for Shape Design in Heat Conduction Problems, Numer. Heat Transfer B, 37(2000), 69–83.
    11. C. H. Huang and B. H. Chao, An Inverse Geometry Problem in Identifying Irregular Boundary Configurations, Int. J. Heat and Mass Transfer, 40 (1997), 2045-2053.
    12. C. H. Huang and C. C. Tsai, A Transient Inverse Two-Dimensional Geometry Problem in Estimating Time-Dependent Irregular Boundary Configurations, Int. J. Heat and Mass Transfer, 41(1998), 1707-1718.
    13. C. H. Huang, C. C. Chiang and H. M. Chen, Shape Identification Problem in Estimating the Geometry of Multiple Cavities, AIAA, J. Thermophysics and Heat Transfer, 12(1998), 270-277.
    14. C. H. Huang and T. Y. Hsiung, An Inverse Design Problem of Estimating Optimal Shape of Cooling Passages in Turbine Blades, Int. J. Heat and Mass Transfer (SCI &EI paper), 42, No. 23(1999), 4307-4319.
    15. C. H. Huang and H. M. Chen, An Inverse Geometry Problem of Identifying Growth of Boundary Shapes in A Multiple Region Domain, Numerical Heat Transfer; Part A, 35(1999), 435-450.
    16. C. H. Huang and M. T. Chaing, A Transient Three-Dimensional Inverse Geometry Problem in Estimating the Space and Time-Dependent Irregular Boundary Shapes, Int. J. Heat and Mass Transfer,(2008). (Accepted, in press).
    17. E. Divo, A. J. Kassab and F. Rodriguez, An Efficient Singular Superposition Technique for Cavity Detection and Shape Optimization, Numerical Heat Transfer; Part B, 46(2004), 1-30.
    18. CFD-RC user’s manual, ESI-CFD Inc. (2005).
    19. O.M. Alifanov, Inverse heat transfer problems. Springer-Verlag, Berlin Heidelberg,(1994).
    20. IMSL Library Edition 10.0, User's Manual: Math Library Version 1.0, IMSL, Houston, TX (1987).

    下載圖示 校內:立即公開
    校外:2008-08-29公開
    QR CODE