簡易檢索 / 詳目顯示

研究生: 王俞芳
Wang, Yu-Fang
論文名稱: 比對數值高程模型時間變化值與重疊點雲於地表變形偵測之精確度分析
Precision Analysis for Surface Deformation Detecting by Comparing Different Period of DEM to the Overlapping Point Clouds
指導教授: 余騰鐸
Yu, Teng-To
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 67
中文關鍵詞: 地表變形點雲共軛DEM
外文關鍵詞: surface deformation, point cloud, conjugate, DEM
相關次數: 點閱:75下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般偵測地表變形常使用不同時期數值模型相減,但此方法在經由內插及相減兩個過程後,誤差可能被疊加而導致與現況不符。本研究提出,將共軛點雲直接相減得到其高程差後再進行內插,以縮小其誤差量。
    本研究使用光達點雲資料,在阿里山選取三個不同地表性質之小區域即崩塌區、非崩塌區及模糊區進行比對。首先進行共軛點雲匹配,共軛點雲為不同時期但具相同位置(即相同x,y坐標)之點雲,將共軛點雲高程差與由光達資料內插產製DEM之差量進行比對,分析使用此兩方法之精確度及其優缺點。崩塌區部分點雲密度高、匹配結果良好達70%以上,非崩塌區則匹配不佳成果未達15%,模糊區則介於兩者約有50%。因此在進行比較後,崩塌區成果較接近真實地表變形,非崩塌區則因匹配結果不佳不予考慮。由於因點雲分布為不規則,比對結果仍以點雲密度較高區域較為合理。在DEM解析度選擇方面,若外業操作程序相同情況下,則以1m網格資料較合適,使用0.5m間距資料做為此類地形變化偵測與其它並無明顯差異。
    除此之外,本研究也比對單期點雲之分布位置及由光達產製DEM之差異,討論在點雲製作DEM過程中,平均其鄰近點雲高程之結果是否引致部分真實地表特徵被忽略。此部分使用不同解析度DEM與點雲較合適之解析度,小區域特徵線在此取樣間隔下可被發現。
    為滿足前後期由光達資料對於地形變化偵測之準確性,在事件前掃描之背景資料屬於低共軛點分布之屬性,為確保對未來事件變異的偵測能力,目前採用光達掃描參數仍過於粗略。

    It is a traditional way to subtract digital models of various time for surface deformation detecting. However the error becomes larger by the two necessary procedures: interpolation and subtraction. Therefore this study suggests a method that subtract the elevation difference of conjugate point clouds then perform the grid interpolation to minimize the errors of unevenly distribution of raw data.
    The LiDAR point cloud data from Alishan is used for the comparision purpose, and then three different land cover regions: landslide area, non-landslide area, and fuzzy area are chosen. First step is to match the conjugate point cloud, the conjugate means the point cloud gathered in different period of time but on the same position(the same x,y coordinate). The purpose of this routine is to compare the elevation difference of conjugate point cloud to the subtraction of different period LiDAR DEM thus to discuss the accuracy, advantage and disadvantage between two methods. The matching result shows that in landslide area, the density of point clouds is the highest and the matching result is the best, and the percentage of overlapped points is 70%; in non-landslide area, the matching result is worse, and the value didn’t above 15%;in fuzzy area, the matching result lies between these two, and the matching value is about 50%. Therefore the result of landslide area is close to ground truth, and non-landslide area isn’t. The position of point clouds is irregular dispersed, so the area with high density data is suitable for this application. Under the same operational procedure, the grid spacing of 1m DEM is suitable for this task since the difference of 0.5m DEM doesn’t provide obvious difference than 1m DEM.
    In addition, this study compares the difference between single tasked point cloud and LiDAR DEM, and discusses whether the effect of averaging the elevation of point cloud when producing LiDAR DEM would neglect the surface feature. By using different grid spacing of DEM to compare with the raw point cloud and to find out the most suitable model. This result shows that the sampling interval of 0.5m DEM is suitable for the capability in showing the small surface feature.
    To ensure the precision of deformation detecting by different period of LiDAR data, the pre-disaster data should be as low density conjugate category. In order to detect any upcoming deformation event, operated LiDAR scanning parameter now is not full fill to such requirement.

    摘要...........................................I Abstract......................................II 謝誌..........................................IV 圖目錄.......................................VII 表目錄.........................................X 第一章 緒論...................................1 1-1 研究動機與目的.............................1 1-2 研究流程...................................2 第二章 文獻回顧...............................4 2-1 光達介紹...................................4 2-2 光達足跡公式...............................8 2-3 數值模型製作及解析度比較..................11 2-4 地形變化偵測..............................18 第三章 研究方法..............................22 3-1 研究工具與研究區域選取....................24 3-2 點雲資料處理..............................26 3-3 計算光達足跡..............................30 3-4 共軛點雲匹配..............................32 3-5 數值模型內插方法..........................34 3-6 點雲資料比較..............................35 第四章 研究成果..............................37 4-1共軛點雲匹配成果...........................37 4-2 地形變化成果比對..........................40 4-2.1 崩塌區成果比對..........................40 4-2.2 非崩塌區成果比對........................46 4-2.3 模糊區成果比對..........................47 4-3 單期點雲與DEM比對成果.....................52 4-3.1 試驗區與5m DEM比對成果..................52 4-3.2試驗區二與1m及0.5m DEM比對成果...........56 第五章 結論與建議............................61 5-1 結論......................................61 5-2 建議......................................63 參考文獻......................................64

    1.許正雄,「阿里山國家風景區」,嘉義縣:交通部觀光局阿里山國家風景區管理處,2004。
    2.劉春、陳華雲、吳杭彬,「激光三維遙感的數據處理與特徵提取」,科學出版社,2009。
    3.史天元、何心瑜、陳大科,「空載光達正高化算探討:以高屏地區為例」,航測及遙測學刊,第12卷1期,73-82頁,2007。
    4.何心瑜、史天元,「空載光達作業及品管流程之研究」,航測及遙測學刊,第12卷2期,165-177頁,2007。
    5.吳俊、許斌,「GPS/INS組合系統的工作原理及其在航空遙感中的應用現狀」,測繪科學與工程,第26卷1期,12-14頁,2006。
    6.張世駿、江介倫、吳進龍、鄭克聲、陳增壽,「衛星遙測影像應用於地表變遷偵測之研究」,農業工程學報,第52卷3期,21-31頁,2006。
    7.蕭國鑫、劉進金、游明芳、陳大科、徐偉城、王晉倫,「結合空載 LiDAR 與航測高程資料應用於地形變化偵測」,航測及遙測學刊,第11卷3期,283-295頁,2006。
    8.顏宏宇,「LIDAR直接測量數值地形資料精度分析與應用」,國立成功大學地球科學系碩士論文,2005。
    9.Baltsavias, E.P., “Airborne laser scanning: basic relations and formulas.”, ISPRS Journal of Photogrammetry & Remote Sensing, vol.54, no.2-3, pp.199-214, 1999.
    10.Chan, Y.C., Chen, Y.G., Shih, T.Y. and Huang, C., “Characterizing the Hsincheng active fault in northern Taiwan using airborne LiDAR data: Detailed geomorphic features and their structural implications”, Journal of Asian Earth Sciences, vol.31, no.3, pp.303-316, 2007.
    11.Chen, Q., Baldocchi, D., Gong, P. and Kelly, M., “Isolating individual
    trees in a savanna woodland using small footprint lidar data.”, Photogrammetric Engineering and Remote Sensing , vol.72, no.8, pp. 923‐932, 2006.
    12.Cheng, K.S., Wei, C. and Chang, S.C., “Locating landslides using multi-temporal satellite images.”, Advances in Space Research, vol.33, no.3, pp.296-301, 2004.
    13.Harding, D., Blair, J., Rabine, D. and Still, K., “SLICER airborne laser altimeter characterization of canopy structure and sub-canopy topography for the BOREAS Northern and Southern Study Regions: Instrument and Data Product Description.”, In Technical Report Series on the Boreal Ecosystem–Atmosphere Study (BOREAS), vol.93, 2000.
    14.Hofton, M.A. and Blair, J.B., “Laser altimeter return pulse correlation: a method for detecting surface topographic change.”, Journal of Geodynamics, vol.34, no.3-4, pp.477-489, 2002.
    15.Karabacak, V., Altunel, E. and Cakir., Z., “Monitoring aseismic surface creep along the North Anatolian Fault (Turkey) using ground-based LIDAR.”, Earth and Planetary Science Letters, vol.304, no.1-2, pp.64-70, 2011.
    16.Lim, K., Treitz, P., Wulder, M., St-Onge, B. and Flood, M., “ LiDAR remote sensing of forest structure”, Progress in Physical Geography, vol.27, no.1, pp.88-106, 2003.
    17.Matějícˇek, L., Engst, P. and Janˇour, Z., “A GIS-based approach to spatio-temporal analysis of environmental pollution in urban areas: A case study of Prague’s environment extended by LIDAR data.”, Ecological modelling, vol.199, no.3, pp.261-277, 2006.
    18.Means, J., “Design, capabilities and uses of large-footprint and small-footprint lidar systems.”, International Archives of the Photogrammetry and Remote Sensing, vol.32, part 3-w14, pp.201-207, 1999.
    19.Sheng, Y., “ Quantifying the Size of a Lidar Footprint: A Set of Generalized Equations”, IEEE geosciences and remote sensing letters, vol.5, no.3, pp.419-422, 2008.
    20.Sithole , G. and Vosselman, G., “Bridge detection in airborne laser scanner data”, ISPRS Journal of Photogrammetry & Remote Sensing, vol.61, no.1, pp.33-46, 2006.
    21.Soininen, A., “TerraScan User’s Guide”, Terrasolid, 2011.
    22.Takahashi, T., Yamamoto, K., Senda Y. and Tsuzuku, M., “ Estimating
    individual tree heights of sugi (Cryptomeria japonica D. Don) plantations in mountainous areas using small-footprint airborne LiDAR.”, Journal of Forest Research, vol.10, no.2, pp.135–142, 2005.
    23.Valley, R.D., Drake, M.T. and Anderson, C.S., “ Evaluation of alternative interpolation techniques for the mapping of remotely-sensed submersed vegetation abundance”, Aquatic Botany, vol.81, no.1, pp.13-25, 2005.
    24.Wagner, W., Ullrich, A., Ducic, V., Melzer, T. and Studnicka, N. “
    Gaussian decomposition and calibration of a novel smallfootprint
    full-waveform digitising airborne laser scanner.”, ISPRS Journal of Photogrammetry and Remote Sensing, vol.60, no.2, pp.100–112, 2006.
    25.Wagner, W., Hollaus, M., Briese, C. and Ducic, V., “3D vegetation
    mapping using small-footprint full-waveform airborne laser scanners.”, International Journal of Remote Sensing, vol.29, no.5, pp.1433–1452, 2008.
    26.Wehr , A. and Lohr, U., “Airborne laser scanning—an introduction and overview.”, ISPRS Journal of Photogrammetry & Remote Sensing, vol.54, no.2-3, pp.68-82, 1999.
    27.Woolard, J.W. and Colby, J.D., “Spatial characterization, resolution, and volumetric change of coastal dunes using airborne LIDAR: Cape Hatteras, North Carolina.”, Geomorphology, vol.48, no.1-3, pp.269-287, 2002.
    28.Xu, B., Li, F., Zhang, K. and Lin, Z., “Laser footprint size and pointing precision analysis for lidar systems.”, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol.37, Part B1, pp.331-336, 2008.
    29.Yang, B., Shi, W. and Li, Q., “An integrated TIN and Grid method for constructing multi-resolution digital terrain models”, International Journal of Geographical Information Science, vol.19, no.10, pp.1019-1038, 2005.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE