簡易檢索 / 詳目顯示

研究生: 蔡旻樺
Tsai, Min-Hua
論文名稱: 以低溫水熱合成摻雜鋰離子之鈉釔氟礦其上轉換發光性質之研究
Up-conversion Luminescence Properties of Li+ doped NaYF4 by Synthesizing a Low Temperature Hydrothermal Method
指導教授: 蘇彥勳
Su, Yen-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 100
中文關鍵詞: 上轉換NaYF4水熱合成法Li+離子摻雜pH值調整
外文關鍵詞: Up-conversion, hydrothermal synthesis, doping ion, pH value modified
相關次數: 點閱:114下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 上轉換(Up-conversion)是將帶有低能量光子轉換為較高能量光子的光致發光過程,該過程在諸如生物成像、轉換太陽能光譜和安全編碼等許多不同領域具有許多的潛在用途,如今,關於上轉換的研究主要集中在生物醫學信號的偵測和奈米粒子的合成上。於本研究中,本團隊嘗試使用低溫(200℃)、高反應時間(24h)之水熱法,在合成擁有上轉換能力之螢光粉體之鈉釔氟礦(NaYF4)摻雜鐿離子(Yb3+)、銩離子(Tm3+),並在一系列不同pH值條件下進行NaYF4材料的合成,透過影響其反應機構來控制其形貌,進一步改變其發光強度。結果得知低pH值的樣品比較高pH值的樣品具有更好發光強度,由光譜可看出pH值為4的樣品其450 nm的放光強度大約為pH值為10樣品的67倍之多。另外,我們觀察摻雜Li +的NaYF4樣品,發現稀土離子周圍的局部對稱性失序的作用是由Li+摻雜引起的。於結果中能看出摻雜較高濃度的Li+的NaYF4材料與其對應的無摻雜Li+那組相比具有較強的螢光特性和強度,NaYF4:Yb3+.Tm3+材料摻雜20% Li+在藍色475 nm發光強度和450 nm發光強度分別為增強3和7倍,而在345 nm和360 nm附近的紫色放光強度分別為約6和9倍。從研究結果中表明,NaYF4:Yb3+ .Tm3+的上轉換發光能力確實大幅提升,具有Li+摻雜的NaYF4材料十分具有潛在的應用性,在增進太陽能電池效率、細胞追蹤偵測甚至於提升植物的光合作用產能的研究領域中都有在未來值得嘗試的機會。

    Up-conversion, a photoluminescence process which converts few low energy photons to a higher energy photons, has more potential usages in many different fields like bio-imaging, solar spectrum tuning, and security encoding. Nowadays, researches about up-conversion mainly concentrating on synthesis of nanoparticles to improve inefficient situation for viable implementation. In this Perspective, we use the low temperature of the hydrothermal method in the synthesis process successfully. The morphology of NaYF4 is controlled by the reaction mechanism under series of pH value condition, and the luminescence intensity is further changed. As a result, we observe a sample with a low pH value had a better luminous intensity than a sample with a higher pH value. In addition, we describe that the local symmetry disorder around the rare-earth ions was caused by Li+ doping in host lattice. Local symmetry disorder is the reason for enhancement of photoluminescence. NaYF4 material doped with higher concentration of Li+ has stronger photoluminescence properties and intensity than its corresponding un-doped Li+ group. The NaYF4 absorb the infrared light into the blue-violet luminescence, so that the energy absorption of the aquatic is increased to enhance photosynthesis effect and reach the green energy application.

    摘要 I Abstract II 誌謝 VIII 總目錄 X 圖目錄 XIII 表目錄 XVIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 4 第二章 文獻回顧 5 2-1 上轉換材料 5 2-1.1 上轉換材料之機制 6 2-1.2 上轉換材料晶格主體 11 2-1.3 NaYF4: Yb3+,Tm3+之性質 14 2-1.4 NaYF4:Yb3+,Tm3+之製備方法介紹 17 第三章 研究方法及分析儀器 22 3-1 實驗材料 22 3-2 實驗流程 24 3-2.1 實驗設計 24 3-2.2 NaYF4 :Yb3+.Tm3+之製備 25 3-2.3 NaYF4 :Yb3+.Tm3+摻雜Li+之製備 26 3-2.4 NaYF4塗布於水草葉片表面之SiO2黏著劑製備 27 3-3 分析儀器介紹 28 3-3.1 掃描式電子顯微鏡 (SEM) 28 3-3.2 穿透式電子顯微鏡 (TEM) 30 3-3.3 高解析分析電子顯微鏡 (HR-AEM) 31 3-3.4 粉末X光二維繞射儀 (XRD) 33 3-3.5 感應耦合電漿質譜分析儀 (ICP-MS) 35 3-3.6 微拉曼及微光激發螢光光譜儀 (Micro-Raman & Micro-PL Spectrometer) 36 3-3.7 旋轉真空減壓濃縮機 38 3-3.8 光致發光設備及量測儀器 39 3-3.9 光學顯微鏡及影像感測元件 42 第四章 結果與討論 43 4-1 酸鹼合成環境下NaYF4之製備與分析 43 4-1.1 NaYF4 :Yb3+.Tm3+ 之合成 43 4-1.2 NaYF4 :Yb3+.Tm3+ 之結構分析 46 4-1.3 NaYF4 :Yb3+.Tm3+ 之形貌觀測 49 4-1.4 NaYF4 :Yb3+.Tm3+ 之發光特性 55 4-1.5 NaYF4 :Yb3+.Tm3+ 之成分分析 64 4-2 NaYF4摻雜不同濃度Li+之製備與分析 66 4-2.1 NaYF4 :Yb3+.Tm3+摻雜Li+之合成 66 4-2.2 NaYF4 :Yb3+.Tm3+摻雜Li+之形貌觀測 68 4-2.3 NaYF4 :Yb3+.Tm3+摻雜Li+之結構分析 72 4-2.4 NaYF4 :Yb3+.Tm3+摻雜Li+之發光特性 76 4-2.5 NaYF4 :Yb3+.Tm3+摻雜Li+之成分分析 85 4-3 NaYF4塗布於水草葉面上之製備與分析 86 4-3.1 NaYF4塗布於水草葉面上之發光現象 88 第五章 結論及未來展望 92 第六章 參考文獻 93

    [1] W. G. van Sark, J. de Wild, J. K. Rath et al., “Upconversion in solar cells,” Nanoscale Res Lett, vol. 8, no. 1, pp. 81, 2013.
    [2] Q. Q. Zhan, J. Qian, H. J. Liang et al., “Using 915 nm Laser Excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation,” Acs Nano, vol. 5, no. 5, pp. 3744-3757, May, 2011.
    [3] S. C. Cheng, T. L. Cheng, H. C. Chang et al., “Using laser-induced acoustic desorption/electrospray ionization mass spectrometry to characterize small organic and large biological compounds in the solid state and in solution under ambient conditions,” Analytical chemistry, vol. 81, no. 3, pp. 868-874, 2008.
    [4] G. Chen, H. Qiu, P. N. Prasad et al., “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem Rev, vol. 114, no. 10, pp. 5161-214, May 28, 2014.
    [5] F. Auzel, “Upconversion and Anti-Stokes Processes with f and d Ions in Solids,” Chemical Reviews, vol. 104, no. 1, pp. 139–174, 2004.
    [6] D. R. G. J Gamelin, Hans U., “Design of Luminescent Inorganic Materials: New Photophysical Processes Studied by Optical Spectroscopy,” Accounts of Chemical Research, vol. 33, no. 4, pp. 235–242, 2000.
    [7] M. Haase, and H. Schafer, “Upconverting nanoparticles,” Angew Chem Int Ed Engl, vol. 50, no. 26, pp. 5808-29, Jun 20, 2011.
    [8] Z. Huang, X. Li, M. Mahboub et al., “Hybrid Molecule-Nanocrystal Photon Upconversion Across the Visible and Near-Infrared,” Nano Lett, vol. 15, no. 8, pp. 5552-7, Aug 12, 2015.
    [9] M. Wu, D. N. Congreve, M. W. B. Wilson et al., “Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals,” Nature Photonics, vol. 10, no. 1, pp. 31-34, 2015.
    [10] F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem Rev, vol. 104, no. 1, pp. 139-73, Jan, 2004.
    [11] Y. C. Simon, and C. Weder, “Low-power photon upconversion through triplet–triplet annihilation in polymers,” Journal of Materials Chemistry, vol. 22, no. 39, pp. 20817, 2012.
    [12] M. V. DaCosta, S. Doughan, Y. Han et al., “Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review,” Anal Chim Acta, vol. 832, pp. 1-33, Jun 17, 2014.
    [13] N. Bloembergen, “Solid State Infrared Quantum Counters,” Physical Review Letters, vol. 2, no. 3, pp. 84-85, 1959.
    [14] F. Auzel, “Compteur Quantique Par Transfert Denergie De Yb3+ a Tm3+ Dans Un Tungstate Mixte Et Dans Un Verre Germanate,” Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie B, vol. 263, no. 14, pp. 819-&, 1966.
    [15] F. E. Auzel, “Materials and Devices Using Double-Pumped Phosphors with Energy-Transfer,” Proceedings of the Ieee, vol. 61, no. 6, pp. 758-786, 1973.
    [16] M. Wang, G. Abbineni, A. Clevenger et al., “Upconversion nanoparticles: synthesis, surface modification and biological applications,” Nanomedicine, vol. 7, no. 6, pp. 710-29, Dec, 2011.
    [17] J. Zhou, Q. Liu, W. Feng et al., “Upconversion luminescent materials: advances and applications,” Chem Rev, vol. 115, no. 1, pp. 395-465, Jan 14, 2015.
    [18] J. S. Chivian, W. Case, and D. Eden, “The photon avalanche: A new phenomenon in Pr3+‐based infrared quantum counters,” Applied Physics Letters, vol. 35, no. 2, pp. 124-125, 1979.
    [19] F. Wang, R. Deng, J. Wang et al., “Tuning upconversion through energy migration in core–shell nanoparticles,” Nature Materials, vol. 10, no. 12, pp. 968-973, 2011.
    [20] X. Huang, S. Han, W. Huang et al., “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem Soc Rev, vol. 42, no. 1, pp. 173-201, Jan 07, 2013.
    [21] Z. Li, L. Zheng, L. Zhang et al., “Synthesis, characterization and upconversion emission properties of the nanocrystals of Yb3+/Er3+-codoped YF3–YOF–Y2O3 system,” Journal of Luminescence, vol. 126, no. 2, pp. 481-486, 2007.
    [22] R. Lisiecki, W. Ryba-Romanowski, A. Speghini et al., “Luminescence spectroscopy of Er3+-doped and Er3+, Yb3+-codoped LaPO4 single crystals,” Journal of Luminescence, vol. 129, no. 5, pp. 521-525, 2009.
    [23] M. Wang, J.-L. Liu, Y.-X. Zhang et al., “Two-phase solvothermal synthesis of rare-earth doped NaYF4 upconversion fluorescent nanocrystals,” Materials Letters, vol. 63, no. 2, pp. 325-327, 2009.
    [24] X. Pei, Y. Hou, S. Zhao et al., “Frequency upconversion of Tm3+ and Yb3+ codoped YLiF4 synthesized by hydrothermal method,” Materials Chemistry and Physics, vol. 90, no. 2-3, pp. 270-274, 2005.
    [25] F. Wang, and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem Soc Rev, vol. 38, no. 4, pp. 976-89, Apr, 2009.
    [26] P. R. Diamente, M. Raudsepp, and F. C. van Veggel, “Dispersible Tm3+‐Doped Nanoparticles that Exhibit Strong 1.47 μm Photoluminescence,” Advanced Functional Materials, vol. 17, no. 3, pp. 363-368, 2007.
    [27] B. Singh, A. Parchur, R. Singh et al., “Structural and up-conversion properties of Er3+ and Yb3+ co-doped Y2Ti2O7 phosphors,” Physical Chemistry Chemical Physics, vol. 15, no. 10, pp. 3480-3489, 2013.
    [28] H. Guo, N. Dong, M. Yin et al., “Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals,” Journal of Physical Chemistry B, vol. 108, no. 50, pp. 19205-19209, Dec 16, 2004.
    [29] K. Rademaker, Rare Earth-Doped Alkali-Lead-Halide Laser Crystals of Low-Phonon Energy: Cuvillier Verlag, 2005.
    [30] L. Fu, H. Xia, Y. Dong et al., “Upconversion luminescence from terbium and ytterbium codoped LiYF4 single crystals,” Journal of Alloys and Compounds, vol. 617, pp. 584-587, 2014.
    [31] H. Guan, G. Liu, J. Wang et al., “Multicolor tunable luminescence and paramagnetic properties of NaGdF(4):Tb(3+)/Sm(3+) multifunctional nanomaterials,” Dalton Trans, vol. 43, no. 28, pp. 10801-8, Jul 28, 2014.
    [32] J. Shan, W. Kong, R. Wei et al., “An investigation of the thermal sensitivity and stability of the β-NaYF4: Yb, Er upconversion nanophosphors,” Journal of Applied Physics, vol. 107, no. 5, pp. 054901-054901-5, 2010.
    [33] S. Veronesi, D. Parisi, R. Faoro et al., “Excitation and temperature dependence of the manifolds emission in KYF4: Pr3+ single crystal,” Journal of Luminescence, vol. 132, no. 9, pp. 2307-2311, 2012.
    [34] L. G. Jacobsohn, C. J. Kucera, T. L. James et al., “Preparation and Characterization of Rare Earth Doped Fluoride Nanoparticles,” Materials, vol. 3, no. 3, pp. 2053-2068, Mar, 2010.
    [35] J. Ganem, and S. R. Bowman, “Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources,” Nanoscale Research Letters, vol. 8, no. 1, pp. 1-11, Nov 1, 2013.
    [36] N. Xue, X. Fan, Z. Wang et al., “Synthesis process and luminescence properties of Ln3+ doped NaY(WO4)2 nanoparticles,” Materials Letters, vol. 61, no. 7, pp. 1576-1579, 2007.
    [37] J. Su, F. Song, H. Tan et al., “Phonon-assisted mechanisms and concentration dependence of Tm3+ blue upconversion luminescence in codoped NaY(WO4)2 crystals,” Journal of Physics D: Applied Physics, vol. 39, no. 10, pp. 2094-2099, 2006.
    [38] Pandozzi F, Vetrone F, Boyer JC et al., “A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+,Yb3+ nanocrystals,” J. Phys. Chem. B, vol. 109, pp. 17400-5, 2005.
    [39] Yi. GS, and C. GM., “Colloidal LaF3:Yb,Er, LaF3:Yb,Ho and LaF3:Yb, Tm nanocrystals with multicolor upconversion fluorescence,” J. Mater. Chem. A, vol. 15, pp. 4460-4, 2005.
    [40] C. Liu, and D. Chen, “Controlled synthesis of hexagon shaped lanthanide-doped LaF3 nanoplates with multicolor upconversion fluorescence,” Journal of Materials Chemistry, vol. 17, no. 37, pp. 3875, 2007.
    [41] H. Hu, Z. Chen, T. Cao et al., “Hydrothermal synthesis of hexagonal lanthanide-doped LaF(3) nanoplates with bright upconversion luminescence,” Nanotechnology, vol. 19, no. 37, pp. 375702, Sep 17, 2008.
    [42] G.F. Wang, W.P. Qin, J.S. Zhang et al., “Synthesis, growth mechanism, and tunable upconversion luminescence of Yb3+/Tm3+-codoped YF3 nanobundles,” J. Phys. Chem. C, vol. 112, pp. 12161-7, 2008.
    [43] S.G. Xiao, X.L. Yang, J.W. Ding et al., “Up-conversion in Yb3+-Tm3+ co-doped lutetium fluoride particles prepared by a combustionfluorization method,” J. Phys. Chem. C, vol. 111, pp. 8161-5, 2007.
    [44] L. Gao, X. Ge, Z. Chai et al., “Shape-controlled synthesis of octahedral α-NaYF4 and its rare earth doped submicrometer particles in acetic acid,” Nano Research, vol. 2, no. 7, pp. 565-574, 2010.
    [45] Naccache R, Vetrone F, Mahalingam V et al., “Controlled synthesis and water dispersibility of hexagonal phase NaGdF4:Ho3+/Yb3+ nanoparticles,” Chem. Mater., vol. 21, pp. 717-23, 2009.
    [46] V. Mahalingam, F. Vetrone, R. Naccache et al., “Structural and optical investigation of colloidal Ln3+/Yb3+ co-doped KY3F10 nanocrystals,” Journal of Materials Chemistry, vol. 19, no. 20, pp. 3149, 2009.
    [47] L. Liang, X. Zhang, H. Hu et al., “Up-conversion properties in KGd2F7:Yb3+/Er3+,” Materials Letters, vol. 59, no. 17, pp. 2186-2190, 2005.
    [48] Vetrone. F, and C. J. Mahalingam V, “Near-infrared-to-blueupconversion in colloidal BaYF5:Tm3+,Yb3+ nanocrystals,” Chem. Mater., vol. 21, pp. 1847-51, 2009.
    [49] J. H. Burns, “Crystal Structure of Hexagonal Sodium Neodymium Fluoride and Related Compounds,” Inorganic Chemistry, vol. 4, no. 6, pp. 881-&, 1965.
    [50] Y. H. Wang, R. X. Cai, and Z. H. Liu, “Controlled synthesis of NaYF4: Yb, Er nanocrystals with upconversion fluorescence via a facile hydrothermal procedure in aqueous solution,” Crystengcomm, vol. 13, no. 6, pp. 1772-1774, 2011.
    [51] F. Wang, Y. Han, C. S. Lim et al., “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature, vol. 463, no. 7284, pp. 1061-5, Feb 25, 2010.
    [52] N. Menyuk, “NaYF4 : Yb,Er—an efficient upconversion phosphor,” Applied Physics Letters, vol. 21, no. 4, pp. 159, 1972.
    [53] C. X. Li, and J. Lin, “Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application,” Journal of Materials Chemistry, vol. 20, no. 33, pp. 6831-6847, 2010.
    [54] S. J. Budijono, J. Shan, N. Yao et al., “Synthesis of Stable Block-Copolymer-Protected NaYF4:Yb3+, Er3+ Up-Converting Phosphor Nanoparticles,” Chemistry of Materials, vol. 22, no. 2, pp. 311-318, 2010.
    [55] Z. G. Chen, H. L. Chen, H. Hu et al., “Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels,” J. Am. Chem. Soc., vol. 130, pp. 3023–3029, 2008.
    [56] X. Li, Y. Wu, Y. Liu et al., “Cyclometallated ruthenium complex-modified upconversion nanophosphors for selective detection of Hg2+ ions in water,” Nanoscale, vol. 6, no. 2, pp. 1020-8, Jan 21, 2014.
    [57] C. Wang, L. Cheng, and Z. Liu, “Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy,” Biomaterials, vol. 32, no. 4, pp. 1110-20, Feb, 2011.
    [58] N. Bogdan, F. Vetrone, G. A. Ozin et al., “Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles,” Nano Lett, vol. 11, no. 2, pp. 835-40, Feb 09, 2011.
    [59] G. S. Yi, and G. M. Chow, “Synthesis of Hexagonal-Phase NaYF4:Yb,Er and NaYF4:Yb,Tm Nanocrystals with Efficient Up-Conversion Fluorescence,” Advanced Functional Materials, vol. 16, no. 18, pp. 2324-2329, 2006.
    [60] J. Shan, and Y. Ju, “A single-step synthesis and the kinetic mechanism for monodisperse and hexagonal-phase NaYF4:Yb, Er upconversion nanophosphors,” Nanotechnology, vol. 20, no. 27, pp. 275603, Jul 8, 2009.
    [61] S. Mishra, S. Daniele, G. Ledoux et al., “Heterometallic Na-Y(Ln) trifluoroacetate diglyme complexes as novel single-source precursors for upconverting NaYF4 nanocrystals co-doped with Yb and Er/Tm ions,” Chem Commun (Camb), vol. 46, no. 21, pp. 3756-8, Jun 7, 2010.
    [62] Y. DU, “Effects of size and surface on optical properties of NaYF4: Yb, Er Nanoparticles,” 2012.
    [63] H. X. Mai, Y. W. Zhang, R. Si et al., “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J Am Chem Soc, vol. 128, no. 19, pp. 6426-36, May 17, 2006.
    [64] J. W. Stouwdam, and F. C. J. M. v. Veggel, “Near-infrared Emission of Redispersible Er3+, Nd3+, and Ho3+ Doped LaF3 Nanoparticles,” Nano Letters, vol. 2, no. 7, pp. 733-737, 2002.
    [65] J. Zhuang, L. Liang, H. H. Sung et al., “Controlled hydrothermal growth and up-conversion emission of NaLnF4 (Ln= Y, Dy-Yb),” Inorganic chemistry, vol. 46, no. 13, pp. 5404-5410, 2007.
    [66] X. Liang, X. Wang, J. Zhuang et al., “Branched NaYF4 nanocrystals with luminescent properties,” Inorganic Chemistry, vol. 46, no. 15, pp. 6050-6055, Jul 23, 2007.
    [67] Y. Sheng, L. D. Liao, N. Thakor et al., “Rare-Earth Doped Particles as Dual-Modality Contrast Agent for Minimally-Invasive Luminescence and Dual-Wavelength Photoacoustic Imaging,” Scientific Reports, vol. 4, Oct 9, 2014.
    [68] F. Wang, and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J Am Chem Soc, vol. 130, no. 17, pp. 5642-3, Apr 30, 2008.
    [69] “研發奈米科技的基本工具之一電子顯微鏡介紹 – SEM,” 小奈米大世界.
    [70] F. Krumeich, “Scanning Electron Microscopy (SEM),” ETH Zürich and the authors, 2017.
    [71] “研發奈米科技的基本工具之一電子顯微鏡介紹 – TEM,” 小奈米大世界.
    [72] “Integrating sphere,” Wikipedia.
    [73] H. Lin, D. Xu, D. Teng et al., “Shape-controllable synthesis and enhanced upconversion luminescence of Li+doped β-NaLuF4:Yb3+,Ln3+(Ln = Tm, Ho) microcrystals,” New J. Chem., vol. 39, no. 4, pp. 2565-2572, 2015.
    [74] W. Suli, L. Ye, C. Jie et al., “β-NaYF4:Yb3+, Er3+upconversion microcrystals with both high emission intensity and controlled morphology,” Laser & Photonics Reviews, vol. 8, no. 4, pp. 575-582, 2014.
    [75] L. Y. Wang, and Y. D. Li, “Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals,” Chemistry of Materials, vol. 19, no. 4, pp. 727-734, Feb 20, 2007.
    [76] D. Gao, W. Gao, P. Shi et al., “pH- and surfactant-mediated tunable morphology and upconversion of rare-earth doped fluoride microcrystals,” RSC Advances, vol. 3, no. 34, pp. 14757, 2013.
    [77] L. Zhu, Q. Li, X. D. Liu et al., “Morphological control and luminescent properties of CeF3 nanocrystals,” Journal of Physical Chemistry C, vol. 111, no. 16, pp. 5898-5903, Apr 26, 2007.
    [78] B.Q. Liu, J. Wang, L.L. Zhu et al., “Remarkable enhancement of the near-infrared upconversion emission in the β-NaYF4:Yb3+/Tm3+ system with controllable morphology,” Materials Research Bulletin, vol. 51, pp. 180-184, 2014.
    [79] T. Jiang, W. Qin, W. Di et al., “Citric acid-assisted hydrothermal synthesis of α-NaYF4: Yb3+, Tm3+ nanocrystals and their enhanced ultraviolet upconversion emissions,” CrystEngComm, vol. 14, no. 6, pp. 2302-2307, 2012.
    [80] Y. Wang, S. Gai, N. Niu et al., “Synthesis of NaYF4 microcrystals with different morphologies and enhanced up-conversion luminescence properties,” Phys Chem Chem Phys, vol. 15, no. 39, pp. 16795-805, Oct 21, 2013.
    [81] X. Chun-Long, W. Jin-Guo, and Z. Xiang-Yu, “Strong Single-Band Down-Conversion Emission in Tm3+-Doped NaYF4 Microparticles,” Acta Phys. -Chim. Sin., vol. 31, no. 11, pp. 2183-2190, 2015.
    [82] C. Li, J. Zuo, L. Zhang et al., “Accurate Quantitative Sensing of Intracellular pH based on Self-ratiometric Upconversion Luminescent Nanoprobe,” Sci Rep, vol. 6, pp. 38617, Dec 09, 2016.
    [83] H. Lin, D. Xu, D. Teng et al., “Simultaneous size and luminescence control of NaYF4:Yb3+/RE3+ (RE=Tm, Ho) microcrystals via Li+ doping,” Optical Materials, vol. 45, pp. 229-234, 2015.
    [84] C. Zhao, X. Kong, X. Liu et al., “Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles,” Nanoscale, vol. 5, no. 17, pp. 8084-9, Sep 07, 2013.
    [85] M. Yang, Y. Sui, S. Wang et al., “Enhancement of upconversion emission in Y3Al5O12:Er3+ induced by Li+ doping at interstitial sites,” Chemical Physics Letters, vol. 492, no. 1-3, pp. 40-43, 2010.

    無法下載圖示 校內:2022-08-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE