| 研究生: |
林玟伶 Lin, Wen-Ling |
|---|---|
| 論文名稱: |
熱處理及表面修飾對生物可降解ZK60鎂合金之特性影響研究 Research on Heat Treatment and Surface Modification of Biodegradable ZK60 Magnesium Alloy |
| 指導教授: |
葉明龍
Yeh, Ming-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 鎂合金 、熱處理 、生物可降解 、耐蝕性 、微波處理 、磷酸鎂 、生物相容性 |
| 外文關鍵詞: | magnesium alloy, heat treatment, biodegradability, corrosion resistance, microwave-assisted, magnesium phosphate, biocompatibility |
| 相關次數: | 點閱:213 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,鎂及其合金被視為具前瞻性的骨植入固定物,除了因其可降解與優異的生物相容性外,就材料力學層面來看,彈性模數比起現今所使用的醫用金屬材料(不鏽鋼、鈦合金、鈷鉻合金)更為相近天然骨骼,可避免無法刺激新骨生長與重塑的應力遮蔽效應產生。然而,鎂合金在含高濃度氯離子的生理環境中會快速腐蝕,導致組織完全癒合前即失去機械整合性。此外,在降解過程中若氫氣釋放速度過快,亦會使宿主組織受到不利之影響。過去常見對鎂合金進行表面處理的研究,鮮少同時探討其顯微結構所帶來之影響,因此本研究希望透過適當的熱處理加上促進骨活性塗層-磷酸鎂,以期延緩降解速度並提升應用性。
本研究選用以鎂為基地相,添加生物相容性高的鋅、鋯元素的鎂合金為主要材料,探討施以T5、T6以及退火等不同的熱處理方式,並利用成本低且效率高的微波輔助方式,塗覆磷酸鎂化合物於材料表面,觀察其微結構與對機械性質及耐蝕性之變化,並探討於體外細胞試驗的細胞貼附與相容性。
實驗結果顯示,在經過T5時效處理者,因晶粒尺寸較小,晶界多,能提供較多成核所需之驅動力,其機械性質明顯提升,且更優於T6處理。此外,更藉由氫氣釋放、電化學試驗及長期浸泡觀察,可了解到透過熱處理改變材料內部顯微結構以及二次相分佈能改善擠型材ZK60的抗腐蝕能力。透過微波能量、時間、溶液濃度,成功形成一結構穩定的磷酸鎂鈍化層-bobierrite相,有效降低析氫速度,且隨著浸泡時間增加,繼而往上堆疊形成磷酸鈣之化合物強化骨組織與鎂合金間的接合性。於體外細胞試驗結果更可知道,可藉由磷酸鎂修飾鎂合金表面來促進細胞貼附與增生。因此,本研究結合時效熱處理與微波輔助塗覆上磷酸鎂的方式確實在提升其機械性質之餘,也提升生物親和性。
In recent years, magnesium and its alloy have been considered innovative bone implant materials. In addition to its biodegradability and excellent biocompatibility, its elastic modulus is closer to the natural bone than those current medical metal materials used today (stainless steel, Ti alloys, Co-Cr alloys) in terms of the mechanics of material. It can avoid the stress shielding effect that does not stimulate new bone growth and remodeling. However, magnesium alloys are corroded rapidly in a physiological environment with a high concentration of chloride ions, resulting in the loss of mechanical integration before the tissue is completely healed. Besides, the host tissue will also suffer adverse effect when hydrogen evolution is too fast during degradation. In the past, research on the surface treatment of magnesium alloys rarely discussed the effect of the microstructure on the corrosion behavior. Therefore, this study combined the appropriate heat treatment and the stimulation of bone activing magnesium phosphate coating with low cost microwave radiation to slow down the degradation rate and improve applications.
This study chose magnesium alloys by adding zinc and zirconium elements (ZK60) as the main material by considering the biocompatibility. After the different heat treatment T5, T6 as well as annealing and applying the low-cost and high-efficiency microwave-assisted method to coat the magnesium phosphate compound on the surface of the material, the microstructure, the mechanical properties, corrosion resistance and cell compatibility were discussed.
The results showed that the T5 aging treatment has smaller grain size and more grain boundaries driven by more nucleation sites. Its mechanical properties were significantly improved and better than T6-treated. It indicated changing the microstructure and the distribution of secondary phase through heat treatment can improve the corrosion resistance of the extruded ZK60 by hydrogen evolution test, potential dynamic polarization test and long-term immersion test. Through microwave energy, time, and solution concentration optimization, a stable structure-bobierrite phase was successfully formed, and effectively reduced the hydrogen evolution rate. Moreover, as the immersion time increased, calcium phosphate was formed on the surface which could strengthen the bonding force between the bone tissue and magnesium alloy. In vitro test results can be known that cell attachment and proliferation can be promoted by modifying the surface with magnesium phosphate. Thus, this research combined the aging heat treatment and microwave-assisted coating of magnesium phosphate not only to enhance its mechanical properties but improve biological affinity.
1. Radha, R. and Sreekanth, D., Insight of magnesium alloys and composites for orthopedic implant applications – a review. Journal of Magnesium and Alloys, 2017. 5(3): p. 286-312.
2. Wu, S., Liu, X., Yeung, K.W.K., Guo, H., Li, P., Hu, T., et al., Surface nano-architectures and their effects on the mechanical properties and corrosion behavior of Ti-based orthopedic implants. Surface and Coatings Technology, 2013. 233: p. 13-26.
3. Trumbo, P., Schlicker, S., Yates, A.A., and Poos, M., Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids. Journal of the American Dietetic Association, 2002. 102(11): p. 1621-1630.
4. Staiger, M.P., Pietak, A.M., Huadmai, J., and Dias, G., Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 2006. 27(9): p. 1728-1734.
5. Bowen, P.K., Drelich, J., and Goldman, J., Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Advance Materials, 2013. 25(18): p. 2577-82.
6. Purnama, A., Hermawan, H., Couet, J., and Mantovani, D., Assessing the biocompatibility of degradable metallic materials: state-of-the-art and focus on the potential of genetic regulation. Acta Biomaterialia, 2010. 6(5): p. 1800-7.
7. Baino, F., Ceramics for bone replacement: Commercial products and clinical use, in Advances in Ceramic Biomaterials, P. Palmero, F. Cambier, and E. De Barra, Editors. 2017, Woodhead Publishing. p. 249-278.
8. Tahmasebifar, A., Kayhan, S.M., Evis, Z., Tezcaner, A., Çinici, H., and Koç, M., Mechanical, electrochemical and biocompatibility evaluation of AZ91D magnesium alloy as a biomaterial. Journal of Alloys and Compounds, 2016. 687: p. 906-919.
9. Stack, R.S., Califf, R.M., Phillips, H.R., Pryor, D.B., Quigley, P.J., Bauman, R.P., et al., Interventional Cardiac Catheterization at Duke Medical Center - The Duke Interventional Cardiac Catheterization Program. American Journal of Cardiology, 1988. 62(10 PART II): p. 3F-4F.
10. Sezer, N., Evis, Z., Kayhan, S.M., Tahmasebifar, A., and Koç, M., Review of magnesium-based biomaterials and their applications. Journal of Magnesium and Alloys, 2018. 6(1): p. 23-43.
11. More, R., Haubold, A., and Bokros, J., Biomaterials Science: An Introduction to Materials in Medicine. Pyrolytic carbon for long-term medical implants, 1996: p. 170-180.
12. Jayasathyakawin, S., Ravichandran, M., Baskar, N., Anand Chairman, C., and Balasundaram, R., Mechanical properties and applications of Magnesium alloy – Review. Materials Today: Proceedings, 2020.
13. Saris, N.-E.L., Mervaala, E., Karppanen, H., Khawaja, J.A., and Lewenstam, A., Magnesium: An update on physiological, clinical and analytical aspects. Clinica Chimica Acta, 2000. 294(1): p. 1-26.
14. Richards, A.M., Coleman, N.W., Knight, T.A., Belkoff, S.M., and Mears, S.C., Bone density and cortical thickness in normal, osteopenic, and osteoporotic sacra. J Osteoporos, 2010. 2010.
15. Drits, M.E., Rokhlin, L.L., Sheredin, V.V., and Shul'ga, Y.N., Magnesium alloys with high damping capacity. Metal Science and Heat Treatment, 1970. 12(11): p. 939-941.
16. Luo, A.A., Magnesium casting technology for structural applications. Journal of Magnesium and Alloys, 2013. 1(1): p. 2-22.
17. Eddy Jai Poinern, G., Brundavanam, S., and Fawcett, D., Biomedical Magnesium Alloys: A Review of Material Properties, Surface Modifications and Potential as a Biodegradable Orthopaedic Implant. American Journal of Biomedical Engineering, 2013. 2(6): p. 218-240.
18. Davis, K.G., Marras, W.S., and Waters, T.R., Evaluation of spinal loading during lowering and lifting. Clinical Biomechanics, 1998. 13(3): p. 141-152.
19. Vormann, J., Magnesium: nutrition and metabolism. Molecular Aspects of Medicine, 2003. 24(1): p. 27-37.
20. Brar, H.S., Platt, M.O., Sarntinoranont, M., Martin, P.I., and Manuel, M.V., Magnesium as a biodegradable and bioabsorbable material for medical implants. The Journal of The Minerals, 2009. 61(9): p. 31-34.
21. Walker, J., Shadanbaz, S., Woodfield, T.B., Staiger, M.P., and Dias, G.J., Magnesium biomaterials for orthopedic application: a review from a biological perspective. Journal of Biomedical Materials Research B: Applied Biomaterials, 2014. 102(6): p. 1316-31.
22. Zreiqat, H., Howlett, C., Zannettino, A., Evans, P., Schulze-Tanzil, G., Knabe, C., et al., Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. Journal of biomedical materials research, 2002. 62: p. 175-84.
23. Vormann, J., Förster, C., Zippel, U., Lozo, E., Günther, T., Merker, H.J., et al., Effects of Magnesium Deficiency on Magnesium and Calcium Content in Bone and Cartilage in Developing Rats in Correlation to Chondrotoxicity. Calcified Tissue International, 1997. 61(3): p. 230-238.
24. Rude, R.K., Kirchen, M.E., Gruber, H.E., Stasky, A.A., and Meyer, M.H., Magnesium Deficiency Induces Bone Loss in the Rat. Mineral and Electrolyte Metabolism, 1998. 24(5): p. 314-320.
25. Dimai, H., Porta, S., Wirnsberger, G., Lindschinger, M., Pamperl, I., Dobnig, H., et al., Daily Oral Magnesium Supplementation Suppresses Bone Turnover in Young Adult Males 1. The Journal of clinical endocrinology and metabolism, 1998. 83: p. 2742-8.
26. Vormann, J. and Anke, M., Dietary Magnesium: Supply, Requirements and Recommendations - Results From Duplicate and Balance Studies in Man. Journal of Clinical and Basic Cardiology, 2002. 5.
27. Rude, R.K. and Olerich, M., Magnesium deficiency: Possible role in osteoporosis associated with gluten-sensitive enteropathy. Osteoporosis International, 1996. 6(6): p. 453-461.
28. Song, G. and Song, S., A Possible Biodegradable Magnesium Implant Material. Advanced Engineering Materials, 2007. 9(4): p. 298-302.
29. Xin, Y., Huo, K., Tao, H., Tang, G., and Chu, P.K., Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomaterialia, 2008. 4(6): p. 2008-15.
30. Gu, X.N., Zheng, Y.F., and Chen, L.J., Influence of artificial biological fluid composition on the biocorrosion of potential orthopedic Mg-Ca, AZ31, AZ91 alloys. Biomedical Materials, 2009. 4(6): p. 065011.
31. Müller, W.D., Nascimento, M.L., Zeddies, M., Córsico, M., Gassa, L.M., and Mele, M.A.F.L.d., Magnesium and its alloys as degradable biomaterials: corrosion studies using potentiodynamic and EIS electrochemical techniques. Materials Research, 2007. 10(1): p. 5-10.
32. Endo, K., Chemical Modification of Metallic Implant Surfaces with Biofunctional Proteins (Part 2) Corrosion Resistance of a Chemically Modified NiTi Alloy. Dental Materials Journal, 1995. 14(2): p. 199-210,278.
33. Williams, R.L. and Williams, D.F., Albumin adsorption on metal surfaces. Biomaterials, 1988. 9(3): p. 206-212.
34. Liu, L.J. and Schlesinger, M., Corrosion of magnesium and its alloys. Corrosion Science, 2009. 51(8): p. 1733-1737.
35. Ambat, R., Aung, N.N., and Zhou, W., Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy. Corrosion Science, 2000. 42(8): p. 1433-1455.
36. Zeng, R., Dietzel, W., Witte, F., Hort, N., and Blawert, C., Progress and Challenge for Magnesium Alloys as Biomaterials. Advanced Engineering Materials, 2008. 10(8): p. B3-B14.
37. Neyman, A. and Olszewski, O., Research on fretting wear dependence of hardness ratio and friction coefficient of fretted couple. Wear, 1993. 162-164: p. 939-943.
38. Erinc, M., Sillekens, W.H., Mannens, R.G.T.M., and Werkhoven, R.J. Applicability of existing magnesium alloys as biomedical implant materials. in TMS Annual Meeting. 2009.
39. Chen, Y., Xu, Z., Smith, C., and Sankar, J., Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomaterialia, 2014. 10(11): p. 4561-4573.
40. Nakamura, Y., Tsumura, Y., Tonogai, Y., Shibata, T., and Ito, Y., Differences in Behavior among the Chlorides of Seven Rare Earth Elements Administered Intravenously to Rats. Toxicological Sciences, 1997. 37(2): p. 106-116.
41. Gu, X., Zheng, Y., Cheng, Y., Zhong, S., and Xi, T., In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials, 2009. 30(4): p. 484-498.
42. Brandão-Neto, J., Stefan, V., Mendonça, B.B., Bloise, W., and Castro, A.V.B., The essential role of zinc in growth. Nutrition Research, 1995. 15(3): p. 335-358.
43. Nielsen, F.H. and Milne, D.B., A moderately high intake compared to a low intake of zinc depresses magnesium balance and alters indices of bone turnover in postmenopausal women. European Journal of Clinical Nutrition, 2004. 58(5): p. 703-10.
44. Diamond, I. and Hurley, L.S., Histopathology of Zinc-deficient Fetal Rats. The Journal of Nutrition, 1970. 100(3): p. 325-329.
45. Rosalbino, F., De Negri, S., Scavino, G., and Saccone, A., Microstructure and in vitro degradation performance of Mg-Zn-Mn alloys for biomedical application. Journal of Biomedical Materials Research A, 2013. 101(3).
46. Cai, S., Lei, T., Li, N., and Feng, F., Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg–Zn alloys. Materials Science and Engineering: C, 2012. 32(8): p. 2570-2577.
47. Su, Z., Liu, C., and Wan, Y., Microstructures and mechanical properties of high performance Mg–4Y–2.4Nd–0.2Zn–0.4Zr alloy. Materials and Design, 2013. 45: p. 466-472.
48. Chen, J., Tan, L., Yu, X., Etim, I.P., Ibrahim, M., and Yang, K., Mechanical properties of magnesium alloys for medical application: A review. Journal of the Mechanical Behavior of Biomedical Materials, 2018. 87: p. 68-79.
49. Sun, M., Wu, G., Wang, W., and Ding, W., Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg–10Gd–3Y magnesium alloy. Materials Science and Engineering: A, 2009. 523(1-2): p. 145-151.
50. Lee, Y.C., Dahle, A.K., and StJohn, D.H., The role of solute in grain refinement of magnesium. Metallurgical and Materials Transactions A, 2000. 31(11): p. 2895-2906.
51. Thomsen, P., Larsson, C., Ericson, L.E., Sennerby, L., Lausmaa, J., and Kasemo, B., Structure of the interface between rabbit cortical bone and implants of gold, zirconium and titanium. Journal of Materials Science: Materials in Medicine, 1997. 8(11): p. 653-665.
52. Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K.U., Willumeit, R., et al., Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 2008. 12(5-6): p. 63-72.
53. Li, N. and Zheng, Y., Novel Magnesium Alloys Developed for Biomedical Application: A Review. Journal of Materials Science and Technology, 2013. 29(6): p. 489-502.
54. Kim, W.J., Explanation for deviations from the Hall–Petch Relation based on the creep behavior of an ultrafine-grained Mg–Li alloy with low diffusivity. Scripta Materialia, 2009. 61(6): p. 652-655.
55. Watanabe, H., Moriwaki, K., Mukai, T., Ohsuna, T., Hiraga, K., and Higashi, K., Materials Processing for Structural Stability in a ZK60 Magnesium Alloy. Materials Transactions, 2003. 44(4): p. 775-781.
56. Ratna Sunil, B., Sampath Kumar, T.S., Chakkingal, U., Nandakumar, V., Doble, M., Devi Prasad, V., et al., In vitro and in vivo studies of biodegradable fine grained AZ31 magnesium alloy produced by equal channel angular pressing. Materials Science and Engineering: C, 2016. 59: p. 356-367.
57. Orlov, D., Ralston, K.D., Birbilis, N., and Estrin, Y., Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing. Acta Materialia, 2011. 59(15): p. 6176-6186.
58. Gu, X.N., Li, N., Zheng, Y.F., and Ruan, L., In vitro degradation performance and biological response of a Mg–Zn–Zr alloy. Materials Science and Engineering: B, 2011. 176(20): p. 1778-1784.
59. Song, G., Bowles, A.L., and StJohn, D.H., Corrosion resistance of aged die cast magnesium alloy AZ91D. Materials Science and Engineering: A, 2004. 366(1): p. 74-86.
60. Liu, C., Xin, Y., Tang, G., and Chu, P.K., Influence of heat treatment on degradation behavior of bio-degradable die-cast AZ63 magnesium alloy in simulated body fluid. Materials Science and Engineering: A, 2007. 456(1-2): p. 350-357.
61. Li, X., Jiang, J.-h., Zhao, Y.-h., Ma, A.-b., Wen, D.-j., and Zhu, Y.-t., Effect of equal-channel angular pressing and aging on corrosion behavior of ZK60 Mg alloy. Transactions of Nonferrous Metals Society of China, 2015. 25(12): p. 3909-3920.
62. Reiners, G. and Griepentrog, M., Hard coatings on magnesium alloys by sputter deposition using a pulsed d.c. bias voltage. Surface and Coatings Technology, 1995. 76-77: p. 809-814.
63. Wan, Y.Z., Xiong, G.Y., Luo, H.L., He, F., Huang, Y., and Wang, Y.L., Influence of zinc ion implantation on surface nanomechanical performance and corrosion resistance of biomedical magnesium–calcium alloys. Applied Surface Science, 2008. 254(17): p. 5514-5516.
64. Zeng, R.C., Dietzel, W., Chen, J., Huang, W.J., and Wang, J., Corrosion Behavior of TiO Coating on Magnesium Alloy AM60 in Hank’s Solution. Key Engineering Materials, 2008. 373-374: p. 609-612.
65. Hiraga, H., Inoue, T., Kojima, Y., Kamado, S., and Watanabe, S., Surface Modification by Dispersion of Hard Particles on Magnesium Alloy with Laser. Materials Science Forum, 2000. 350-351: p. 253-260.
66. Galun, R., Weisheit, A., and Mordike, B.L., Improving the Surface Properties of Magnesium by Laser Alloying. Corrosion Reviews, 1998. 16(1-2): p. 53-74.
67. Dubé, D., Fiset, M., Couture, A., and Nakatsugawa, I., Characterization and performance of laser melted AZ91D and AM60B. Materials Science and Engineering: A, 2001. 299(1): p. 38-45.
68. Hiromoto, S., Shishido, T., Yamamoto, A., Maruyama, N., Somekawa, H., and Mukai, T., Precipitation control of calcium phosphate on pure magnesium by anodization. Corrosion Science, 2008. 50(10): p. 2906-2913.
69. Song, Y., Zhang, S., Li, J., Zhao, C., and Zhang, X., Electrodeposition of Ca-P coatings on biodegradable Mg alloy: in vitro biomineralization behavior. Acta Biomaterialia, 2010. 6(5): p. 1736-42.
70. Hiromoto, S. and Yamamoto, A., High corrosion resistance of magnesium coated with hydroxyapatite directly synthesized in an aqueous solution. Electrochimica Acta, 2009. 54(27): p. 7085-7093.
71. Wen, C., Guan, S., Peng, L., Ren, C., Wang, X., and Hu, Z., Characterization and degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for implant applications. Applied Surface Science, 2009. 255(13): p. 6433-6438.
72. Wang, Y., Wei, M., and Gao, J., Improve corrosion resistance of magnesium in simulated body fluid by dicalcium phosphate dihydrate coating. Materials Science and Engineering: C, 2009. 29(4): p. 1311-1316.
73. Li, L.Y., Cui, L.Y., Zeng, R.C., Li, S.Q., Chen, X.B., Zheng, Y., et al., Advances in functionalized polymer coatings on biodegradable magnesium alloys - A review. Acta Biomater, 2018. 79: p. 23-36.
74. Ostrowski, N.J., Lee, B., Roy, A., Ramanathan, M., and Kumta, P.N., Biodegradable poly(lactide-co-glycolide) coatings on magnesium alloys for orthopedic applications. Journal of Materials Science: Materials in Medicine, 2013. 24(1): p. 85-96.
75. Jiang, S., Cai, S., Zhang, F., Xu, P., Ling, R., Li, Y., et al., Synthesis and characterization of magnesium phytic acid/apatite composite coating on AZ31 Mg alloy by microwave assisted treatment. Materials Sciene and Enginnering: C, 2018. 91: p. 218-227.
76. Zhang, F., Cai, S., Xu, G., Wang, F., Yu, N., Ling, R., et al., Preparation and bioactivity of apatite coating on Ti6Al4V alloy by microwave assisted aqueous chemical method. Ceramics International, 2016. 42(16): p. 18466-18473.
77. Shen, S., Cai, S., Li, Y., Ling, R., Zhang, F., Xu, G., et al., Microwave aqueous synthesis of hydroxyapatite bilayer coating on magnesium alloy for orthopedic application. Chemical Engineering Journal, 2017. 309: p. 278-287.
78. Yu, N., Cai, S., Wang, F., Zhang, F., Ling, R., Li, Y., et al., Microwave assisted deposition of strontium doped hydroxyapatite coating on AZ31 magnesium alloy with enhanced mineralization ability and corrosion resistance. Ceramics International, 2017. 43(2): p. 2495-2503.
79. Ren, Y., Zhou, H., Nabiyouni, M., and Bhaduri, S.B., Rapid coating of AZ31 magnesium alloy with calcium deficient hydroxyapatite using microwave energy. Materials Science and Engineering: C, 2015. 49: p. 364-372.
80. Koju, N., Sikder, P., Ren, Y., Zhou, H., and Bhaduri, S.B., Biomimetic coating technology for orthopedic implants. Current Opinion in Chemical Engineering, 2017. 15: p. 49-55.
81. Zhou, H., Nabiyouni, M., and Bhaduri, S.B., Microwave assisted apatite coating deposition on Ti6Al4V implants. Materials Science and Engineeing: C, 2013. 33(7): p. 4435-43.
82. Mesíková, Ž., Šulcová, P., and Trojan, M., Synthesisand characterization of newberyite. Journal of Thermal Analysis and Calorimetry, 2007. 88(1): p. 103-106.
83. Ishizaki, T., Shigematsu, I., and Saito, N., Anticorrosive magnesium phosphate coating on AZ31 magnesium alloy. Surface and Coatings Technology, 2009. 203(16): p. 2288-2291.
84. Rahim, M.I., Tavares, A., Evertz, F., Kieke, M., Seitz, J.M., Eifler, R., et al., Phosphate conversion coating reduces the degradation rate and suppresses side effects of metallic magnesium implants in an animal model. Journal of Biomedical Materials Research B: Applied Biomaterials, 2017. 105(6): p. 1622-1635.
85. Zhao, H., Cai, S., Ding, Z., Zhang, M., Li, Y., and Xu, G., A simple method for the preparation of magnesium phosphate conversion coatings on a AZ31 magnesium alloy with improved corrosion resistance. RSC Advances, 2015. 5(31): p. 24586-24590.
86. Fouladi, M. and Amadeh, A., Effect of phosphating time and temperature on microstructure and corrosion behavior of magnesium phosphate coating. Electrochimica Acta, 2013. 106: p. 1-12.
87. Nabiyouni, M., Ren, Y., and Bhaduri, S.B., Magnesium substitution in the structure of orthopedic nanoparticles: A comparison between amorphous magnesium phosphates, calcium magnesium phosphates, and hydroxyapatites. Materials Science and Engineering: C, 2015. 52: p. 11-7.
88. Ostrowski, N., Lee, B., Hong, D., Enick, P.N., Roy, A., and Kumta, P.N., Synthesis, Osteoblast, and Osteoclast Viability of Amorphous and Crystalline Tri-Magnesium Phosphate. ACS Biomaterials Science and Engineering, 2014. 1(1): p. 52-63.
89. Meza-García, E., Influence of alloying elements on the microstructure and mechanical properties of extruded Mg-Zn based alloys. 2010.
90. ASTM D3359-09 Standard Test Methods for Measuring Adhesion by Tape Test. ASTM Standards, 2010.
91. Song, G. and Atrens, A., Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance. Advanced Engineering Materials, 2003. 5(12): p. 837-858.
92. Ren, Y., Babaie, E., Lin, B., and Bhaduri, S.B., Microwave-assisted magnesium phosphate coating on the AZ31 magnesium alloy. Biomedical Materials, 2017. 12(4): p. 045026.
93. Boistelle, R. and Abbona, F., Morphology, habit and growth pf newberyite crystals (MgHPO4·3 H2O). Journal of Crystal Growth, 1981. 54(2): p. 275-295.
94. Brown, P.W., Gulick, J., and Dumm, J., The System MgO─P2O5─H2O at 25°C. Journal of the American Ceramic Society, 1993. 76(6): p. 1558-1562.
95. Yamamoto, A. and Hiromoto, S., Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro. Materials Science and Engineering: C, 2009. 29(5): p. 1559-1568.
96. Ashassi-Sorkhabi, H., Ghasemi, Z., and Seifzadeh, D., The inhibition effect of some amino acids towards the corrosion of aluminum in 1M HCl+1M H2SO4 solution. Applied Surface Science, 2005. 249(1-4): p. 408-418.
97. Ashassi-Sorkhabi, H., Majidi, M.R., and Seyyedi, K., Investigation of inhibition effect of some amino acids against steel corrosion in HCl solution. Applied Surface Science, 2004. 225(1-4): p. 176-185.
98. Ren, F., Ding, Y., and Leng, Y., Infrared spectroscopic characterization of carbonated apatite: A combined experimental and computational study. Journal of Biomedical Materials Research Part A, 2014. 102(2): p. 496-505.
99. Zhang, S., Biological and Biomedical Coatings Handbook: Processing and Characterization. Advances in materials science and engineering. 2011: CRC Press.