簡易檢索 / 詳目顯示

研究生: 吳長庚
Wu, Chang-Keng
論文名稱: 不同淘刷深度對承受軸向力單樁基礎變形之影響
Effect of Scour Depth on The Deformation Response of Pile Foundations under Axial Loads
指導教授: 陳景文
Chen, Jing-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 107
中文關鍵詞: 大口徑單樁基礎淘刷軸向載重緊密砂土
外文關鍵詞: monopile, scour, axial load, dense sand
相關次數: 點閱:93下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因土地成本愈趨昂貴,海上風力發電已成為各國綠色能源發展重點研究之一,設計出足以承受海上惡劣環境影響的基礎設施,是為海上風力發電安全運轉的條件。大口徑單樁基礎(monopile)是海上風力發電機普遍採用的基礎型式之一,然而海域環境中之樁基礎周圍因受海流及波浪作用造成大口徑單樁基礎鄰近的海床淘刷,使基礎埋置深度減少,降低基礎的承載力,影響整體安全性。
    本研究係利用PLAXIS與APILE兩種分析程式建立單樁基礎模型,分析單樁基礎埋至在緊密砂土時,受到軸向載重作用後之影響進行比較,當APILE無法完全考量大口徑單樁基礎之行為時,可利用有限元素模型來分析大口徑單樁基礎受力行為,且將淘刷坑幾何形狀考慮在數值模型中,能更準確模擬大口徑單樁基礎周圍海床受淘刷時之情形。

    The development of green power focus on the offshore wind turbine because the cost of land is much higher. To design of the foundation which can maintain the stability of wind turbine in the harsh offshore environments is important. Monopiles are used as foundation structures for offshore wind energy towers, which are open-ended steel pipe piles with large diameters. For a pile foundation, the scour caused by wave and current lead to the reduction of embedded pile length and may decrease the lateral resistance.
    This study is used the program PLAXIS and APILE to generate the model on the deformation response of monopile foundation embedded in sandy soil under axial loading. The behavior of a large-diameter monopole is simulated by the finite element model instead of APILE. And numerical models take the geometry of scour hole into account can accurately simulate the behavior of a monopile with a scour in sandy soil.

    摘要 I Abstract III 誌謝 V 目錄 VII 表目錄 IX 圖目錄 XI 符號 XV 第一章 緒論 1 1.1 前言 1 1.2 研究目的 1 1.3 研究內容及方法 2 第二章 文獻回顧 5 2.1 單樁軸向承載力估算 5 2.2 設計淘刷坑幾何建議 9 2.3淘刷對單樁垂直承載力之影響-現有計算法 25 2.4現有室內試驗及現地實驗結果 28 2.5 有限元素法(Finite Element Method) 29 第三章 分析程式介紹 31 3.1 PLAXIS程式背景 31 3.3 APILE程式背景 43 3.4 APILE程式介紹 43 第四章 數值模型建立 49 4.1 模型概述 49 4.1.1 考量淘刷之單樁基礎有限元素數值模型建立 49 4.1.2 樁-土界面元素重要性 55 4.2模型參數 58 4.3模型校正 64 4.4 FEM分析結果與API方法分析結果比較 68 4.5 大口徑單樁基礎載重情形 75 第五章 分析結果 77 5.1淘刷深度對單樁基礎之影響 77 5.2 樁徑對單樁基礎之影響 83 5.3樁長對單樁基礎之影響 90 5.4 設計建議 97 第六章 結論與建議 101 6.1 結論 101 6.2 建議 102 參考文獻 103 作者簡述 107

    1.周南山、王訓濤,「深基礎承受軸向力與側向力之設計與電腦分析」,財團法人台灣營建研究中心,臺北,1994。
    2.姚孝其、邱詠兆、郭玉樹,「再談國內與國際風力發電之現況與展望」,台電工程月刊,第697期,第123-133頁,2006。
    3.胡邵敏,「基樁工程-增訂一版」,地工技術叢書之九,臺北,2009。
    4.郭玉樹、曾韋禎、陳景文、 Martin Achmus,「海床掏刷對海上風力發電單樁基礎側向變形影響研究」,臺灣風能學術研討會,2010。
    5.張忠潔,「跌水沖刷與橋墩沖刷互動關係試驗之研究」,碩士論文,國立成功大學水利及海洋工程研究所,臺南,2002。
    6.郭修賢,「公路橋梁樁基礎受洪水淘刷之破壞模式研究」,碩士論文,國立成功大學土木工程研究所,臺南,2010。
    7.閆澍旺、高江林、王成華,「水流沖刷對樁承載力之影響數值模型」,岩土力學,第30卷第5期,2009。
    8.曾韋禎,「公路橋梁沉箱基礎受洪水淘刷破壞模式之研究」,碩士論文,國立成功大學土木工程研究所,臺南,2009。
    9.廖南華,「土壤經驗參數於數值分析之應用」,碩士論文,國立成功大學土木工程研究所,臺南,2003。
    10.黎杰倫,「沖刷樁基承受側向載重之變位分析」,碩士論文,國立成功大學土木工程研究所,臺南,2006。
    11.American Petroleum Institute. “API Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms,” Report RP-2A, 1993.
    12.American Petroleum Institute (API). (2007). “Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design.” Twenty-first Edition, December 2000.
    13.Ansari, S. A., and Qadar, A. (1994). “Ultimate depth of scour around brideg piers,” Proceeding of the ASCE National Conference on Hydraulic Engineering, Buffalo, USA, Vol. 1,pp.51-55
    14.Atilla, Bayram., and Magnus, Larson. (2000). “ANALYSIS OF SCOUR AROUND A GROUP OF VERTICAL PILES IN THE FIELD,” ASCE. J. Wtrwy., Port, Coast., and Oc. Engrg. Vol. 126, pp.215-220.
    15.AZM S. AL-HOMOUD, T. FOUAD and A. MOKHTAR. (2003). “Comparison between measured and predicted values of axial end bearing and skin capacity of piles bored in cohesionless soils in the Arabian Gulf Region,” Geotechnical and Geological Engineering 21, pp. 47-62.
    16.Bolton, M.D. (1986). “The Strength and Dilatancy of Sands. Geotechnique,” Vol. 36, No. 1, pp. 65-78.
    17.Boon J. H., Sutherland, J., Whitehouse, R. Soulsby, Stam, C.J. M., Verhoeven, K. Hogedal, M. and Hald, T. (2004). “Scour behavior and scour protection for monopile foundation of offshore wind turbines,” European Wind Energy Conference & Exhibition, London.
    18.CHEN Guo-ping, ZUO Qi-hua and HUANG Hai-long. (2004). “Local Scour Around Pile Under Wave Action,” China Ocean Engineering. Vol 18, pp. 403-412.
    19.COYLE HM, CASTELLO RR. (1981). “NEW DESIGN CORRELATIONS FOR PILES IN SANDS,” ASCE.JOURNAL OF THE GEOTECHNICAL ENGINEERING DIVISION. Vol.107, pp. 965-986.
    20.Dahlberg, P. (1983). “Observations of scour around offshore structures,” Canadian geotechnical journal, Vol. 20, pp. 617-628.
    21.DNV (2007). Design of Offshore Wind Turbine Structures. Offshore Standard, Det Norske Veritas, Norway.
    22.Duncan, J.M., Chang, C.-Y. (1970). “Nonlinear Analysis of Stress and Strain in Soil,” ASCE J. of the Soil Mech. And Found.Div. Vol. 96, pp. 1629-1653.
    23.Emilios M. Comodromos., Christos T. Anagnostopoulos., Michael K. Georgiadis(2003). “Numerical assessment of axial pile group response based on load test,” E.M. Comodromos et al., Computers and Geotechnics 30, pp. 505-515.
    24.Hill, R. (1950). The Mathematical Theory of Plasticity, Oxford University Press, London, U.K.
    25.Janbu, J., (1963). “The resistance concept applied to soils,” Proceedings of the 7h ICSMFE, Mexico City 1:191-196.
    26.Kondner, R. L. (1963). “A Hyperbolic Stress Strain Formulation for Sands,” 2. Pan. Am. ICOSFE Brazil, Vol. 1, pp.289-324.
    27.Kuo, Y-S. (2008). On the behavior of large-diameter piles under cyclic lateral load, Ph. D. thesis, Heft 65, Leibniz Universität Hannover.
    28.Manoliu, I., Dimitriu, D. V., and Dobrescu, GH. (1985). “Load-deformation characteristics of drilled piers,” Proceedings of 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, Vol. 3, pp. 153-158.
    29.Meyerhof, G.G. (1976). “Bearing Capacity and Settlement of Pile Foundation,” Journal of the Geotechnical Engineering Division, American Society of Civil Engineers, Vol. 102, No. GT3, pp. 197-228.
    30.M. Ram Babu, V. Sumer, and S. Narasimha Rao. (2003). “Measurement of Scour in Cohesive Soils Around a Vertical Pile-Simplified Instrumentation and Regression Analysis,” IEEE JOURNAL OF OCEANIC ENGINEERING, Vol. 28, No. 1, pp. 106-116.
    31.Nielsen, A. W. and Hansen, E. A. (2007). “Time-varing wave and current-induced scour around offshore wind turbines,” Proceedings of the 26th International Conference on offshore Mechanics and Arctic Engineering, Vol. 5, pp. 399-408.
    32.R. J. Jardine., R. F. Overy., and F. C. Chow. (1998). “AXIAL CAPACITY OF OFFSHORE PILES IN DENSE NORTH SEA SANDS,” JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, Vol. 124, No. 2, pp. 171-178.
    33.Rudolph, D., and Bos, K. J. (2006). “Scour around a monopole under combined wave-current conditions and low KCnumbers,” Proceeding of Third International Conference on Scour and Erosion, Amsterdam,pp.213-214.
    34.Schanz, T. (1998). Zur Modellierung des Mechanischen Verhaltens von Reibungsmaterialen, Habilitation, Stuttgart Universitat.
    35.Sumer B. Mutlu., Figen Hatipoglu., and Jørgen, Fredsøe. (2007). “Wave Scour around a Pile in Sand, Medium Dense,and Dense Silt,” ASCE. Wtrwy., Port, Coast., and Oc. Engrg. Vol. 133, pp. 14-27.
    36.Sumer, B., and Fredsøe J. (2001). “Scour around pile in combined waves and current,” Journal of Hydraulic Engineering, Vol. 127, No. 5, pp.403-411.
    37.Von Soos, P., (1990). Properties of Soil and Rock (in German). In: Grundbautaschenbuch Part 4, Edition 4, Ernst & Sohn, Berlin.
    38.Whitehouse R. J. S., Sutherland, J and O’Brien D. (2006). “Seabed scour assessment for offshore wind farm,” Proceeding of Third International Conference on Scour and Erosion, Amsterdam, pp. 245-246.
    39.Zaaijer M. B. (2002). Design methods for offshore wind turbines at exposed sites - sensitivity analysis for foundations of offshore wind turbines. Delft University of Technology.

    下載圖示 校內:2012-08-25公開
    校外:2016-08-25公開
    QR CODE