| 研究生: |
沈郁文 Shen, Yu-Wen |
|---|---|
| 論文名稱: |
針柱狀矽酸鋰鐵之合成及其於鋰離子電池之應用 Synthesis of Needle-Shaped Lithium Iron Silicate for Lithium-Ion Battery Application |
| 指導教授: |
郭炳林
Kuo, Ping-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 鋰離子電池 、正極材料 、矽酸鋰鐵 、水熱合成法 |
| 外文關鍵詞: | Lithium ion battery, Li2FeSiO4, Hydrothermal Synthesis |
| 相關次數: | 點閱:81 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用水熱合成法製備Li2FeSiO4 (LFS),其形態為奈米針柱狀集束。本研究分為三部份,水熱製備LFS、製備碳披覆LFS與LFS電極充放電測試。
於水熱合成階段,本研究藉由加入螯合劑來減少產生不純物,再提高水熱反應溫度,強化Li2FeSiO4結晶。水熱所得之產物分別以樹脂或蔗糖為披覆碳源進行碳化,控制使用適量的氫氣分別得到LFS/r或LFS/s,上述材料可由SEM與TEM觀察粒子形態,再由XRD訊號確認產物與不純物,最後由TGA測量披覆碳與Li2FeSiO4的重量比例。
於電化學性能方面,分別以LFS/r或LFS/s為正極材料,組成半電池並進行充放電測試,在50℃下充放電速率0.06 C且充放電電位區間為1800 mV至4700 mV時,LFS/r可逆電容量為155 mAh/g,LFS/s為143 mAh/g。研究中發現,當充電電位降為4100 mV時可避免不可逆電容量的產生,而放電電位降至1500 mV以下會發生過放電而使Li2FeSiO4結構崩解,因此將充放電電位區間控制在1800至4100mV時,在50℃下,LFS/s之可逆電容量為135 mAh/g,且Li2FeSiO4可於此電位區間進行穩定循環充放電。
Li2FeSiO4 was prepared by the hydrothermal method from LiOH, FeSO4, and amorphous SiO2 at 180℃for 3 day. The influences of synthesis conditions (cheating agent, hydrothermal temperature, precursors, and the mix of the precursors) were systematically examined. Carbon coated Li2FeSiO4(LFS/C) was synthesized from a mixture of as-prepared Li2FeSiO4 and resin or sucrose in solvent via a simple mixing, then calcinated under high-temperature treatment. The resulting Li2FeSiO4/resin (LFS/r) and Li2FeSiO4/sucrose (LFS/s) samples were characterized via X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and thermogravimetric analysis.
When tested as lithium-ion battery cathodes, the discharge capacity of the LFS/r and LFS/s samples can reach 163 and 144 mAh /g, respectively, in the voltage window of 1.5−4.7 V at the rate of 0.06 C.
Furthermore, when the charge voltage set to 4.1 V, the gap between charge and discharge capacity disappeared, that it is good for battery. The result shows that the best voltage window for Li2FeSiO4 is about from 1.8 V to 4.1 V.
[1] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414 (2001) 359-367.
[2] 電気化学会電池技術委員会, 電池ハンドブック, 2010.
[3] S.L. Candelaria, Y. Shao, W. Zhou, X. Li, J. Xiao, J.-G. Zhang, Y. Wang, J. Liu, J. Li, G. Cao, Nanostructured carbon for energy storage and conversion, Nano Energy, 1 (2012) 195-220.
[4] AIST, 台日鋰電池 安全、材料暨電池設計系統研討會, (2013).
[5] N.A. Kaskhedikar, J. Maier, Lithium Storage in Carbon Nanostructures, Advanced Materials, 21 (2009) 2664-2680.
[6] K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chemical Reviews, 104 (2004) 4303-4418.
[7] E. Ferg, R.J. Gummow, A. de Kock, M.M. Thackeray, Spinel Anodes for Lithium‐Ion Batteries, Journal of The Electrochemical Society, 141 (1994) L147-L150.
[8] M. Wilkening, R. Amade, W. Iwaniak, P. Heitjans, Ultraslow Li diffusion in spinel-type structured Li4Ti5O12-A comparison of results from solid state NMR and impedance spectroscopy, Physical Chemistry Chemical Physics, 9 (2007) 1239-1246.
[9] B. Wang, B. Luo, X. Li, L. Zhi, The dimensionality of Sn anodes in Li-ion batteries, Materials Today, 15 (2012) 544-552.
[10] W.-R. Liu, Z.-Z. Guo, W.-S. Young, D.-T. Shieh, H.-C. Wu, M.-H. Yang, N.-L. Wu, Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive, Journal of Power Sources, 140 (2005) 139-144.
[11] K. Zaghib, A. Mauger, H. Groult, J. Goodenough, C. Julien, Advanced Electrodes for High Power Li-ion Batteries, Materials, 6 (2013) 1028-1049.
[12] J. Chen, Recent Progress in Advanced Materials for Lithium Ion Batteries, Materials, 6 (2013) 156-183.
[13] 鄭如翔, 黃炳照, 鋰離子電池正極材料之發展, 化工, 58 (2011) 10-39.
[14] Z. Liu, J. Scott Cronin, Y.-c.K. Chen-Wiegart, J.R. Wilson, K.J. Yakal-Kremski, J. Wang, K.T. Faber, S.A. Barnett, Three-dimensional morphological measurements of LiCoO2 and LiCoO2/Li(Ni1/3Mn1/3Co1/3)O2 lithium-ion battery cathodes, Journal of Power Sources, 227 (2013) 267-274.
[15] Y. Shao-Horn, L. Croguennec, C. Delmas, E.C. Nelson, M.A. O'Keefe, Atomic resolution of lithium ions in LiCoO2, Nat Mater, 2 (2003) 464-467.
[16] H. Xia, Z. Luo, J. Xie, Nanostructured LiMn2O4 and their composites as high-performance cathodes for lithium-ion batteries, Progress in Natural Science: Materials International, 22 (2012) 572-584.
[17] R.K.B. Gover, P.R. Slater, 26 Conducting solids, Annual Reports Section "A" (Inorganic Chemistry), 98 (2002) 505-529.
[18] Y. Zhang, Q.-y. Huo, P.-p. Du, L.-z. Wang, A.-q. Zhang, Y.-h. Song, Y. Lv, G.-y. Li, Advances in new cathode material LiFePO4 for lithium-ion batteries, Synthetic Metals, 162 (2012) 1315-1326.
[19] T.-F. Yi, X.-Y. Li, H. Liu, J. Shu, Y.-R. Zhu, R.-S. Zhu, Recent developments in the doping and surface modification of LiFePO4 as cathode material for power lithium ion battery, Ionics, 18 (2012) 529-539.
[20] O. Toprakci, H.A.K. Toprakci, L.W. Ji, X.W. Zhang, Fabrication and Electrochemical Characteristics of LiFePO4 Powders for Lithium-Ion Batteries, KONA Powder Part. J., (2010) 50-73.
[21] Y. Wang, P. He, H. Zhou, Olivine LiFePO4: development and future, Energy & Environmental Science, 4 (2011) 805-817.
[22] D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J.S. Gnanaraj, H.-J. Kim, Design of electrolyte solutions for Li and Li-ion batteries: a review, Electrochimica Acta, 50 (2004) 247-254.
[23] K. Leung, Electronic Structure Modeling of Electrochemical Reactions at Electrode/Electrolyte Interfaces in Lithium Ion Batteries, The Journal of Physical Chemistry C, 117 (2012) 1539-1547.
[24] A. Nytén, A. Abouimrane, M. Armand, T. Gustafsson, J.O. Thomas, Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material, Electrochemistry Communications, 7 (2005) 156-160.
[25] A. Saracibar, A. Van der Ven, M.E. Arroyo-de Dompablo, Crystal Structure, Energetics, And Electrochemistry of Li2FeSiO4 Polymorphs from First Principles Calculations, Chemistry of Materials, 24 (2012) 495-503.
[26] M.E. Arroyo-de Dompablo, M. Armand, J.M. Tarascon, U. Amador, On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni), Electrochemistry Communications, 8 (2006) 1292-1298.
[27] A.R. Armstrong, N. Kuganathan, M.S. Islam, P.G. Bruce, Structure and Lithium Transport Pathways in Li2FeSiO4 Cathodes for Lithium Batteries, Journal of the American Chemical Society, 133 (2011) 13031-13035.
[28] K.M. Bui, V.A. Dinh, T. Ohno, Diffusion Mechanism of Polaron-Li Vacancy Complex in Cathode Material Li2FeSiO4, Appl. Phys. Express, 5 (2012).
[29] A. Liivat, J.O. Thomas, Li-ion migration in Li2FeSiO4-related cathode materials: A DFT study, Solid State Ionics, 192 (2011) 58-64.
[30] C. Sirisopanaporn, C. Masquelier, P.G. Bruce, A.R. Armstrong, R. Dominko, Dependence of Li2FeSiO4 Electrochemistry on Structure, Journal of the American Chemical Society, 133 (2010) 1263-1265.
[31] S.-i. Nishimura, S. Hayase, R. Kanno, M. Yashima, N. Nakayama, A. Yamada, Structure of Li2FeSiO4, Journal of the American Chemical Society, 130 (2008) 13212-13213.
[32] J. Moskon, R. Dominko, R. Cerc-Korosec, M. Gaberscek, J. Jamnik, Morphology and electrical properties of conductive carbon coatings for cathode materials, Journal of Power Sources, 174 (2007) 683-688.
[33] W. Chen, M. Lan, D. Zhu, C. Wang, S. Xue, C. Yang, Z. Li, J. Zhang, L. Mi, Synthesis, characterization and electrochemical performance of Li2FeSiO4/C for lithium-ion batteries, RSC Advances, 3 (2013) 408-412.
[34] W.H. Chen, M. Lan, D. Zhu, C.L. Wang, S.R. Xue, C.C. Yang, Z.X. Li, J.M. Zhang, L.W. Mi, Synthesis, characterization and electrochemical performance of Li2FeSiO4/C for lithium-ion batteries, Rsc Advances, 3 (2013) 408-412.
[35] Z.P. Yan, S. Cai, X. Zhou, Y.M. Zhao, L.J. Miao, Sol-Gel Synthesis of Nanostructured Li2FeSiO4/C as Cathode Material for Lithium Ion Battery, Journal of the Electrochemical Society, 159 (2012) A894-A898.
[36] S. Zhang, C. Deng, S.Y. Yang, Preparation of Nano-Li2FeSiO4 as Cathode Material for Lithium-Ion Batteries, Electrochem. Solid State Lett., 12 (2009) A136-A139.
[37] Z.L. Gong, Y.X. Li, G.N. He, J. Li, Y. Yang, Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol-gel process, Electrochem. Solid State Lett., 11 (2008) A60-A63.
[38] N. Yabuuchi, Y. Yamakawa, K. Yoshii, S. Komaba, Hydrothermal Synthesis and Characterization of Li<sub>2</sub>FeSiO<sub>4</sub> as Positive Electrode Materials for Li-Ion Batteries, Electrochemistry, 78 (2010) 363-366.
[39] N. Yabuuchi, Y. Yamakawa, K. Yoshii, S. Komaba, Low-temperature phase of Li2FeSiO4: crystal structure and a preliminary study of electrochemical behavior, Dalton Transactions, 40 (2011) 1846-1848.
[40] G.R. Hu, Y.B. Cao, Z.D. Peng, K. Du, Q.L. Jiang, Preparation of Li2FeSiO4 Cathode Material for Lithium-Ion Batteries by Microwave Synthesis, Acta Phys.-Chim. Sin., 25 (2009) 1004-1008.
[41] L. Hong, Z. Zhang, Effect of carbon sources on the electrochemical performance of Li2FeSiO4 cathode materials for lithium ion batteries, Russ J Electrochem, 49 (2013) 386-390.
[42] Y. Wang, D. Su, G. Wang, The Effect of Carbon Coating on the Electrochemical Performance of Nanosized Li2FeSiO4 Cathode Materials, Acta Phys. Pol. A, 123 (2013) 279-282.
[43] S. Zhang, C. Deng, B.L. Fu, S.Y. Yang, L. Ma, Doping effects of magnesium on the electrochemical performance of Li2FeSiO4 for lithium ion batteries, Journal of Electroanalytical Chemistry, 644 (2010) 150-154.
[44] P. Larsson, R. Ahuja, A. Liivat, J.O. Thomas, Structural and electrochemical aspects of Mn substitution into Li2FeSiO4 from DFT calculations, Computational Materials Science, 47 (2010) 678-684.
[45] A. Nyten, S. Kamali, L. Haggstrom, T. Gustafsson, J.O. Thomas, The lithium extraction/insertion mechanism in Li2FeSiO4, Journal of Materials Chemistry, 16 (2006) 2266-2272.
[46] Y.-D. Cho, G.T.-K. Fey, H.-M. Kao, The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes, Journal of Power Sources, 189 (2009) 256-262.
[47] Voltammetric techniques, in: Inorganic Electrochemistry: Theory, Practice and Application, The Royal Society of Chemistry, 2003, pp. 49-136.
校內:2018-08-01公開