簡易檢索 / 詳目顯示

研究生: 沈郁文
Shen, Yu-Wen
論文名稱: 針柱狀矽酸鋰鐵之合成及其於鋰離子電池之應用
Synthesis of Needle-Shaped Lithium Iron Silicate for Lithium-Ion Battery Application
指導教授: 郭炳林
Kuo, Ping-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 64
中文關鍵詞: 鋰離子電池正極材料矽酸鋰鐵水熱合成法
外文關鍵詞: Lithium ion battery, Li2FeSiO4, Hydrothermal Synthesis
相關次數: 點閱:81下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用水熱合成法製備Li2FeSiO4 (LFS),其形態為奈米針柱狀集束。本研究分為三部份,水熱製備LFS、製備碳披覆LFS與LFS電極充放電測試。
    於水熱合成階段,本研究藉由加入螯合劑來減少產生不純物,再提高水熱反應溫度,強化Li2FeSiO4結晶。水熱所得之產物分別以樹脂或蔗糖為披覆碳源進行碳化,控制使用適量的氫氣分別得到LFS/r或LFS/s,上述材料可由SEM與TEM觀察粒子形態,再由XRD訊號確認產物與不純物,最後由TGA測量披覆碳與Li2FeSiO4的重量比例。
    於電化學性能方面,分別以LFS/r或LFS/s為正極材料,組成半電池並進行充放電測試,在50℃下充放電速率0.06 C且充放電電位區間為1800 mV至4700 mV時,LFS/r可逆電容量為155 mAh/g,LFS/s為143 mAh/g。研究中發現,當充電電位降為4100 mV時可避免不可逆電容量的產生,而放電電位降至1500 mV以下會發生過放電而使Li2FeSiO4結構崩解,因此將充放電電位區間控制在1800至4100mV時,在50℃下,LFS/s之可逆電容量為135 mAh/g,且Li2FeSiO4可於此電位區間進行穩定循環充放電。

    Li2FeSiO4 was prepared by the hydrothermal method from LiOH, FeSO4, and amorphous SiO2 at 180℃for 3 day. The influences of synthesis conditions (cheating agent, hydrothermal temperature, precursors, and the mix of the precursors) were systematically examined. Carbon coated Li2FeSiO4(LFS/C) was synthesized from a mixture of as-prepared Li2FeSiO4 and resin or sucrose in solvent via a simple mixing, then calcinated under high-temperature treatment. The resulting Li2FeSiO4/resin (LFS/r) and Li2FeSiO4/sucrose (LFS/s) samples were characterized via X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and thermogravimetric analysis.
    When tested as lithium-ion battery cathodes, the discharge capacity of the LFS/r and LFS/s samples can reach 163 and 144 mAh /g, respectively, in the voltage window of 1.5−4.7 V at the rate of 0.06 C.
    Furthermore, when the charge voltage set to 4.1 V, the gap between charge and discharge capacity disappeared, that it is good for battery. The result shows that the best voltage window for Li2FeSiO4 is about from 1.8 V to 4.1 V.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2鋰離子二次電池 2 1.3 負極材料 3 1.3.1石墨負極 4 1.3.2 Li4Ti5O12負極 5 1.3.3鋰合金負極 6 1.4 正極材料 7 1.4.1 LiCoO2正極 9 1.4.2 LiMn2O4正極 10 1.4.3 LiFePO4正極 11 1.5 電解液 12 第二章 基本理論 13 2.1 鋰離子電池之工作原理 13 2.2 Li2FeSiO4正極材料 14 2.3碳包覆Li2FeSiO4的Li+傳導機制 15 2.4 Li2FeSiO4之合成方法 16 2.4.1 固相合成法 16 2.4.2 溶膠凝膠法 17 2.4.3 溶劑熱法 18 2.5 Li2FeSiO4之改質方法 19 2.5.1表面包覆碳 19 2.5.2掺雜不同金屬離子 20 2.6 研究動機 20 第三章 實驗 21 3.1 實驗藥品與材料 21 3.2 樣品製備 22 3.2.1 奈米矽酸鋰鐵粒子製備 22 3.2.2碳披覆矽酸鋰鐵材料之製備 22 3.3 實驗分析儀器與裝置 23 3.3.1 掃描式電子顯微鏡(SEM) 23 3.3.2 穿透式電子顯微鏡(TEM) 23 3.3.3 X-射線繞射光譜(XRD) 24 3.3.4熱重分析(Thermogravimetric analysis , TGA) 25 3.3.5 氮氣等溫吸附/脫附測量(BET) 25 3.4 電池性能測試 26 3.4.1 正極之極片製作 26 3.4.2 鈕扣型電池組裝 26 3.4.3 電池性能測試方法步驟 27 第四章 結果與討論 28 4.1奈米針柱狀矽酸鋰鐵之製備 28 4.1.1不同鐵前驅物對產物的影響 28 4.1.2不同鋰前驅物及矽前驅物對產物的影響 30 4.2水熱合成最佳化 31 4.2.1利用添加劑減少Fe3O4 31 4.2.2水熱溫度與反應時間的影響 36 4.2.3攪拌均勻減少Li2SiO3 39 4.3碳披覆矽酸鋰鐵碳化條件最佳化 41 4.3.1披覆碳重量分析與表面積分析 46 4.4碳披覆矽酸鋰鐵之半電池充放電測試 48 4.4.1披覆碳之針柱狀集束LFS之電池性能 48 4.4.2改變放電電位之影響 50 4.4.3循環伏安法之分析 52 4.4.3.1 LFS之鋰離子擴散係數 54 4.4.4改變充電電位之影響 57 第五章 結論 59 參考文獻 61 圖目錄 圖1.1 鋰離子電池與其它電池能量密度比較圖 1 圖1.2 各種負極材料之放電電位與比電容量圖 3 圖1.3 SEI膜形成及溶劑共嵌入反應示應圖 5 圖1.4 Li4Ti5O12之結構示意圖 6 圖1.5 各種正極材料之電位與比電容量圖 8 圖1.6 LiCoO2之結構示意圖 9 圖1.7 LiMn2O4之結構示意圖 10 圖1.8 LiFePO4之結構示意圖 11 圖2.1 鋰離子電池工作原理示意圖 13 圖2.2 LFS之結構示意圖 14 圖2.3 以Pmn21為例之Li+傳導通道示意圖 15 圖2.4 充放電時粒子表面電子與鋰離子傳導機制示意圖 16 圖3.1 奈米矽酸鋰鐵粒子製備示意圖 22 圖3.2 碳披覆矽酸鋰鐵製備示意圖 23 圖4.1 不同鐵前驅鹽所得產物之SEM圖 (a) FeSO4 (b) FeCl2 (c) FeC2O4 (d) Fe(NH4)2(SO4)2 29 圖4.2 不同鐵前驅鹽所得產物之XRD圖 (a) FeSO4 (b) FeCl2 (c) FeC2O4 (d) Fe(NH4)2(SO4)2 30 圖4.3 改變其他前驅物之XRD圖(a)以CH3COOLi取代LiOH (b)以Li2SiO3取代LiOH與SiO2 31 圖4.4 加入不同添加劑所得產物之XRD圖(a) Hydroquinone (b) Citric Acid (c) EDTA (d) Acetylaceotone 32 圖4.5 各種添加劑所得產物之XRD圖(a)一級胺(b) 二級胺 (c) 三級胺 (d)一醇胺(e)二醇胺(f)三醇胺 33 圖4.6 各種添加劑所得產物之SEM圖(a)一級胺(b) 二級胺 (c) 三級胺 (d)一醇胺(e)二醇胺(f)三醇胺 34 圖4.7 加入不同氮數胺類所得之XRD圖 (a)二氮胺(b)三氮胺(c)四氮胺 35 圖4.8 加入不同氮數胺類所得之SEM圖 (a)二氮胺(b)三氮胺(c)四氮胺 36 圖4.9 加入最佳螯合劑後經不同水熱條件之XRD圖 (a)150℃ 3天 (b) 150℃ 5天(c) 180℃ 3天(d) 180℃ 5天………....….……37 圖4.10 加入最佳螯合劑後經不同水熱條件之SEM圖(a)150℃ 3天 (b) 150℃ 5天(c) 180℃ 3天(d) 180℃ 5天…………………38 圖4.11 加入FeSO4後混合攪拌 (a)5分鐘 (b)30分鐘 之XRD圖 39 圖4.12 加入FeSO4後混合攪拌 (a)5分鐘 (b)30分鐘 之SEM圖 39 圖4.13 披覆碳做為還原劑在600℃下反應(b) 4小時(c) 12小時所得產物 XRD圖與(a) 未加螯合劑水熱所得之LFS …………………….41 圖4.14 碳化時通入(b) 氬氣/適量氫氣(c) 氬氣/過量氫氣 所得之 XRD圖與(a) 未加螯合劑水熱所得之LFS……………………..42 圖4.15最佳化之碳披覆LFS (b)LFS/r (c)LFS/s (a)最佳化LFS 43 圖4.16披覆碳LFS之TEM圖(a)最佳化LFS (b)LFS/r (c)LFS/s 45 圖4.17 (a)LFS/s (b)LFS/r 之TGA圖 46 圖4.18吸附脫附曲線圖 (a)LFS/s (b)LFS/r 47 圖4.19 (a)LFS/s (b)LFS/r於常溫下與(c)LFS/r於60℃下之充放電圖 49 圖4.20 (a)LFS/s (b)LFS/r於常溫下與(c)LFS/s (d)LFS/r於50℃下 之充放電圖 50 圖4.21 LFS/r之CV圖 52 圖4.22常溫下(a)碳披覆LFS不同掃瞄速率之CV圖及(b) ip對v1/2線性迴歸圖 55 圖4.23 50℃下(a)碳披覆LFS不同掃瞄速率之CV圖及 (b) ip對v1/2線性迴歸圖 56 圖4.24 常溫下充電電位改為4100 mV之LFS/s充放電圖 57 圖4.25 LFS/s 50℃下充電至4100 mV所得之(a)充放電圖(b)循環壽命圖 58 表目錄 表1.1 常見負極材料之比較 4 表1.2 常見LIB正極材料之比較 8 表4.1 計算所得之表面積與孔洞面積 47

    [1] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414 (2001) 359-367.
    [2] 電気化学会電池技術委員会, 電池ハンドブック, 2010.
    [3] S.L. Candelaria, Y. Shao, W. Zhou, X. Li, J. Xiao, J.-G. Zhang, Y. Wang, J. Liu, J. Li, G. Cao, Nanostructured carbon for energy storage and conversion, Nano Energy, 1 (2012) 195-220.
    [4] AIST, 台日鋰電池 安全、材料暨電池設計系統研討會, (2013).
    [5] N.A. Kaskhedikar, J. Maier, Lithium Storage in Carbon Nanostructures, Advanced Materials, 21 (2009) 2664-2680.
    [6] K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chemical Reviews, 104 (2004) 4303-4418.
    [7] E. Ferg, R.J. Gummow, A. de Kock, M.M. Thackeray, Spinel Anodes for Lithium‐Ion Batteries, Journal of The Electrochemical Society, 141 (1994) L147-L150.
    [8] M. Wilkening, R. Amade, W. Iwaniak, P. Heitjans, Ultraslow Li diffusion in spinel-type structured Li4Ti5O12-A comparison of results from solid state NMR and impedance spectroscopy, Physical Chemistry Chemical Physics, 9 (2007) 1239-1246.
    [9] B. Wang, B. Luo, X. Li, L. Zhi, The dimensionality of Sn anodes in Li-ion batteries, Materials Today, 15 (2012) 544-552.
    [10] W.-R. Liu, Z.-Z. Guo, W.-S. Young, D.-T. Shieh, H.-C. Wu, M.-H. Yang, N.-L. Wu, Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive, Journal of Power Sources, 140 (2005) 139-144.
    [11] K. Zaghib, A. Mauger, H. Groult, J. Goodenough, C. Julien, Advanced Electrodes for High Power Li-ion Batteries, Materials, 6 (2013) 1028-1049.
    [12] J. Chen, Recent Progress in Advanced Materials for Lithium Ion Batteries, Materials, 6 (2013) 156-183.
    [13] 鄭如翔, 黃炳照, 鋰離子電池正極材料之發展, 化工, 58 (2011) 10-39.
    [14] Z. Liu, J. Scott Cronin, Y.-c.K. Chen-Wiegart, J.R. Wilson, K.J. Yakal-Kremski, J. Wang, K.T. Faber, S.A. Barnett, Three-dimensional morphological measurements of LiCoO2 and LiCoO2/Li(Ni1/3Mn1/3Co1/3)O2 lithium-ion battery cathodes, Journal of Power Sources, 227 (2013) 267-274.
    [15] Y. Shao-Horn, L. Croguennec, C. Delmas, E.C. Nelson, M.A. O'Keefe, Atomic resolution of lithium ions in LiCoO2, Nat Mater, 2 (2003) 464-467.
    [16] H. Xia, Z. Luo, J. Xie, Nanostructured LiMn2O4 and their composites as high-performance cathodes for lithium-ion batteries, Progress in Natural Science: Materials International, 22 (2012) 572-584.
    [17] R.K.B. Gover, P.R. Slater, 26 Conducting solids, Annual Reports Section "A" (Inorganic Chemistry), 98 (2002) 505-529.
    [18] Y. Zhang, Q.-y. Huo, P.-p. Du, L.-z. Wang, A.-q. Zhang, Y.-h. Song, Y. Lv, G.-y. Li, Advances in new cathode material LiFePO4 for lithium-ion batteries, Synthetic Metals, 162 (2012) 1315-1326.
    [19] T.-F. Yi, X.-Y. Li, H. Liu, J. Shu, Y.-R. Zhu, R.-S. Zhu, Recent developments in the doping and surface modification of LiFePO4 as cathode material for power lithium ion battery, Ionics, 18 (2012) 529-539.
    [20] O. Toprakci, H.A.K. Toprakci, L.W. Ji, X.W. Zhang, Fabrication and Electrochemical Characteristics of LiFePO4 Powders for Lithium-Ion Batteries, KONA Powder Part. J., (2010) 50-73.
    [21] Y. Wang, P. He, H. Zhou, Olivine LiFePO4: development and future, Energy & Environmental Science, 4 (2011) 805-817.
    [22] D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J.S. Gnanaraj, H.-J. Kim, Design of electrolyte solutions for Li and Li-ion batteries: a review, Electrochimica Acta, 50 (2004) 247-254.
    [23] K. Leung, Electronic Structure Modeling of Electrochemical Reactions at Electrode/Electrolyte Interfaces in Lithium Ion Batteries, The Journal of Physical Chemistry C, 117 (2012) 1539-1547.
    [24] A. Nytén, A. Abouimrane, M. Armand, T. Gustafsson, J.O. Thomas, Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material, Electrochemistry Communications, 7 (2005) 156-160.
    [25] A. Saracibar, A. Van der Ven, M.E. Arroyo-de Dompablo, Crystal Structure, Energetics, And Electrochemistry of Li2FeSiO4 Polymorphs from First Principles Calculations, Chemistry of Materials, 24 (2012) 495-503.
    [26] M.E. Arroyo-de Dompablo, M. Armand, J.M. Tarascon, U. Amador, On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni), Electrochemistry Communications, 8 (2006) 1292-1298.
    [27] A.R. Armstrong, N. Kuganathan, M.S. Islam, P.G. Bruce, Structure and Lithium Transport Pathways in Li2FeSiO4 Cathodes for Lithium Batteries, Journal of the American Chemical Society, 133 (2011) 13031-13035.
    [28] K.M. Bui, V.A. Dinh, T. Ohno, Diffusion Mechanism of Polaron-Li Vacancy Complex in Cathode Material Li2FeSiO4, Appl. Phys. Express, 5 (2012).
    [29] A. Liivat, J.O. Thomas, Li-ion migration in Li2FeSiO4-related cathode materials: A DFT study, Solid State Ionics, 192 (2011) 58-64.
    [30] C. Sirisopanaporn, C. Masquelier, P.G. Bruce, A.R. Armstrong, R. Dominko, Dependence of Li2FeSiO4 Electrochemistry on Structure, Journal of the American Chemical Society, 133 (2010) 1263-1265.
    [31] S.-i. Nishimura, S. Hayase, R. Kanno, M. Yashima, N. Nakayama, A. Yamada, Structure of Li2FeSiO4, Journal of the American Chemical Society, 130 (2008) 13212-13213.
    [32] J. Moskon, R. Dominko, R. Cerc-Korosec, M. Gaberscek, J. Jamnik, Morphology and electrical properties of conductive carbon coatings for cathode materials, Journal of Power Sources, 174 (2007) 683-688.
    [33] W. Chen, M. Lan, D. Zhu, C. Wang, S. Xue, C. Yang, Z. Li, J. Zhang, L. Mi, Synthesis, characterization and electrochemical performance of Li2FeSiO4/C for lithium-ion batteries, RSC Advances, 3 (2013) 408-412.
    [34] W.H. Chen, M. Lan, D. Zhu, C.L. Wang, S.R. Xue, C.C. Yang, Z.X. Li, J.M. Zhang, L.W. Mi, Synthesis, characterization and electrochemical performance of Li2FeSiO4/C for lithium-ion batteries, Rsc Advances, 3 (2013) 408-412.
    [35] Z.P. Yan, S. Cai, X. Zhou, Y.M. Zhao, L.J. Miao, Sol-Gel Synthesis of Nanostructured Li2FeSiO4/C as Cathode Material for Lithium Ion Battery, Journal of the Electrochemical Society, 159 (2012) A894-A898.
    [36] S. Zhang, C. Deng, S.Y. Yang, Preparation of Nano-Li2FeSiO4 as Cathode Material for Lithium-Ion Batteries, Electrochem. Solid State Lett., 12 (2009) A136-A139.
    [37] Z.L. Gong, Y.X. Li, G.N. He, J. Li, Y. Yang, Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol-gel process, Electrochem. Solid State Lett., 11 (2008) A60-A63.
    [38] N. Yabuuchi, Y. Yamakawa, K. Yoshii, S. Komaba, Hydrothermal Synthesis and Characterization of Li<sub>2</sub>FeSiO<sub>4</sub> as Positive Electrode Materials for Li-Ion Batteries, Electrochemistry, 78 (2010) 363-366.
    [39] N. Yabuuchi, Y. Yamakawa, K. Yoshii, S. Komaba, Low-temperature phase of Li2FeSiO4: crystal structure and a preliminary study of electrochemical behavior, Dalton Transactions, 40 (2011) 1846-1848.
    [40] G.R. Hu, Y.B. Cao, Z.D. Peng, K. Du, Q.L. Jiang, Preparation of Li2FeSiO4 Cathode Material for Lithium-Ion Batteries by Microwave Synthesis, Acta Phys.-Chim. Sin., 25 (2009) 1004-1008.
    [41] L. Hong, Z. Zhang, Effect of carbon sources on the electrochemical performance of Li2FeSiO4 cathode materials for lithium ion batteries, Russ J Electrochem, 49 (2013) 386-390.
    [42] Y. Wang, D. Su, G. Wang, The Effect of Carbon Coating on the Electrochemical Performance of Nanosized Li2FeSiO4 Cathode Materials, Acta Phys. Pol. A, 123 (2013) 279-282.
    [43] S. Zhang, C. Deng, B.L. Fu, S.Y. Yang, L. Ma, Doping effects of magnesium on the electrochemical performance of Li2FeSiO4 for lithium ion batteries, Journal of Electroanalytical Chemistry, 644 (2010) 150-154.
    [44] P. Larsson, R. Ahuja, A. Liivat, J.O. Thomas, Structural and electrochemical aspects of Mn substitution into Li2FeSiO4 from DFT calculations, Computational Materials Science, 47 (2010) 678-684.
    [45] A. Nyten, S. Kamali, L. Haggstrom, T. Gustafsson, J.O. Thomas, The lithium extraction/insertion mechanism in Li2FeSiO4, Journal of Materials Chemistry, 16 (2006) 2266-2272.
    [46] Y.-D. Cho, G.T.-K. Fey, H.-M. Kao, The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes, Journal of Power Sources, 189 (2009) 256-262.
    [47] Voltammetric techniques, in: Inorganic Electrochemistry: Theory, Practice and Application, The Royal Society of Chemistry, 2003, pp. 49-136.

    無法下載圖示 校內:2018-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE