簡易檢索 / 詳目顯示

研究生: 李明勳
Lee, Ming-Hsun
論文名稱: Franz-Keldysh振盪的理論推導與實驗驗證
Theoritical analysis and experimental verification of the Franz-Keldysh Oscillation
指導教授: 黃正雄
Hwang, Jenn-Shyong
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 67
中文關鍵詞: 調制光譜凱爾迪西漸近展開法
外文關鍵詞: Photoreflectance, FKO, WKB, approximation
相關次數: 點閱:46下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要以WKB漸近展開法研究光調制光譜學中的樣品在中強電場調制下其調制光譜中所出現的法蘭茲—凱爾迪西(Franz—Keldysh effect)的理論,同時進行光調制光譜的實驗以驗證所得的理論。首先,根據光學,電磁學及量子力學的基本理論推導光調制光譜的物理機制﹐並藉由中高電場下電子電洞對的薛丁格方程式來求得在中電場調制下介電常數虛部的調制量﹐可用Airy函數平方的積分式表示之。

    接著,對Airy函數的數學特性做了一系列的分析與推導,並引入了WKB漸近展開法來求出介電常數虛部的調制量,再經由K-K relation求出介電常數的實部並與低電場下的Aspnese三階微分公式擬合, 即可決定合適的Seraphin係數並求出反射率的改變量﹐即 ,所得之公式與一般用以擬和及分析實驗數據的公式是一致的;此外,在許多文獻資料中用以表示中電場下介電係數虛部的譜圖在光子能量高於能隙值時會有遞增振盪而發散的現象,但是實際調制光譜的實驗數據都顯示出譜圖的振盪應是隨光子能量的增加而衰減的,因此我們在計算介電係數時,對光子能量引入了增寬參數的修正,經計算後發現經由增寬參數修正過的介電係數由於指數衰減的壓制,的確不會隨著光子能量的增加而發散了。

    最後,我們量測本質砷化鎵基板與砷化鎵表面本徵 摻雜結構( )兩種樣品在不同激發光強度(改變光壓)的光調制光譜,而分析PR光譜譜線所得的結果與我們推導出的公式所預測的趨勢是一致的。

    Modulation spectroscopy of photoreflectance has been widely employed in studies of the photoelectric properties of semiconductors and semiconductor microstructures. However, to our knowledge, completed derivations of the equations used in analyzing the PR spectra have never been presented in literature or textbooks. In this study, the Franz-Keldysh oscillation of the spectra of the modulation spectroscopy of photoreflectance (PR) or electroreflectance (ER) is analyzed theoretically in detail and demonstrated experimentally. The relative formulae are derived in detail. Based on the fundamental theories of optics, electromagnetism and quantum mechanics, the Schrodinger equation of the electron-hole pair modulated with a moderate electric field is expressed by an Airy function while the imaginary part of the dielectric constant can be expressed as an integration of the square of the Airy function over the photon energy. The WKB approximation is employed to execute the integration of . The real part of the dielectric constant is then obtained from via the Kramer-Kronig relation. By comparing the variations of and as a function of electric field at low field limit with Aspenese third derivative formula, the Seraphine coefficients are obtained and thus the formula for the PR spectra, which agrees with equations widely used in analyzing experimental data of photoreflectance and electroreflectance.

    The equation for the variation in the imaginary part of the dielectric constant has been presented in various literature and textbooks. The equation represents an oscillation function of photon energy and becomes divergent as the photon energy increases, which apparently violate its nature as a physical quantity. In this study, a broadening parameter is introduced in the derivation of . An oscillation function with exponential

    decay is obtained for the variation of , which is not only consistent with its fundamental nature as a physical quantity but also agrees with the features observed experimentally.

    The PR spectra of intrinsic GaAs wafer and surface intrinsic-N+ (SIN+) structures are measured with various pump beam intensities. The variation of the PR spectra observed experimentally agrees with expectations of the theoretically derived formulae. In addition, the electro-optical properties obtained from the analysis of the experimental data are consistent with that observed in previous studies.

    第一章 緒論………………………………………1 第二章 調制光譜學簡介………………………4 第三章 Franz-Keldysh振盪理論推導……………15 3-1 直接躍遷理論與介電係數………………………15 3-2 中電場調制下之介電係數………………18 3-3 增寬效應影響下的介電係數……………………36 第四章 實驗的驗證…………………………………45 4-1 實驗裝置…………………………………………45 4-2 樣品準備與實驗原理……………………………46 4-3 譜線分析與實驗結果……………………………48 第五章 總結…………………………………………………56 參考文獻……………………………………………………58 附表索引: 表1 調制電場的強度分類表………………………………11 附圖索引: 圖2-1 微弱結構在微分譜中可以被一一放大,並可剔除不感興趣的背景值。……………………………………………………8 圖2-2 (a)溫度或應力調制(b)低電場調制…………9 圖2-3 能帶受到電場調制變傾斜,因而對稱性被破壞……10 圖 2-4 中電場調制下介電係數虛部譜圖在光子能量大於能隙值時會有遞增振盪的現象,光子能量小於能隙值時會有指數衰減的現象 ……………………………………………………………………12 圖2-5 中電場調制下的調制光譜的譜圖,其中縱軸的F,G表示 ;橫軸的 表示 …………………………13 圖2-6 當 與 的比值達到2時Franz—Keldysh振盪就消失了。………………………………………………………………14 圖3-1 調制光譜所觀察到的躍遷為直接躍遷………………39 圖3-2 Airy函數圖…………………………………………40 圖3-3 無增寬效應下的介電係數對能量趨勢圖………………41 圖3-4 增寬效應影響下 的介電係數對能量趨勢圖……42 圖3-5 介電係數對能量趨勢圖……………………………43 圖3-6 介電係數對能量趨勢圖……………………………44 圖4-1 光調制光譜的儀器裝置………………………………51 圖4-2 :GaAs SIN+ 樣品,其基板是(001)方向的半絕緣GaAs基板,緩衝層的Si掺雜濃度為 ,頂層為未掺雜層。…52 圖4-3(a)熱平衡時的能帶圖,(b)雷射注入時能帶變化……53 圖 4-4 電場與光強度關係,以及GaAs SIN+ 的變光強度譜圖……………………………………………………………………54 圖4-5 本質GaAs變光強度的譜圖..................55

    1. See, for example, K. Onabe, Y. Tashiro, and Y. Ide, Sur. Sci. 174, 401 (1986)
    2. S. Yamada, T. Fukui, and A. Sugimura, Sur. Sci. 174, 444 (1986)
    3. R. Dingle, W. Wiegman, and C. H. Henry, Phys. Rev. Lett. 33, 827 (1974)
    4. C. Weisbuch, R. C. Miller, R.Dingle, A.C. Gossard, and W. Wiegmann, Solid State Commu. 37, 219 (1981)
    5. A. C. Wright and J. O. Williams, Mat. Letts. 3, 80 (1985);R. D. Dupuis, R. C. Miller and P. M. Petroff, Mat. Letts. 3, 398 (1985)
    6. H. Shen, P. Parayanthal, Y. F. Liu, and F. H. Pollak, Rev. Sci. Intrum. 58, 1429 (1987)
    7. F. Bassni and G. P. Parravicini, Electric State and Opitical Transition in Solid (America Press, 1975) and D. E. Aspnes, in Handbook on Semiconductors, ed. By T. S. Moss (North-Holland, New York, 1980) Vol. 2, p. 109.
    8. M. Cardona, in Modulation Spectroscopy, (Academic, New York, 1969) and Reference therein.
    9. H. Shen, S. H. Pan, F. H. Pollak, M. Dutta and T. R. AuCoin, Phys. Rev. B36, 9384 (1987).
    10. L. Esaki, in Proceedings of the 17th International Conference on the Physics of Semiconductors, Berkely, 1984, ed. by J. O. Chodi and W. A. Harrison (Spinger Verlay, N. Y. 1985) p.473.
    11. L. Esaki in Recent Topics in Semiconductor Physics, ed. by Kamimurus and Toyozawa, World Scientific, Singpor, 1983, p.1.
    12. P. C. Klipstein and N. Apsley, J. Phys. C: Solid State Phys. 19, 6461 (1986).
    13. W. Zhou, H. Shen, J. Pamulapati, P. Cooke and M. Dutta, Appl. Phys. Lett. 66, 607 (1995).
    14. D. S. Chemla, B. Joseph, J. M. Kuto, T. Y. Chang, C. Klingshirn, G. Livescu and David A. B. Miller, IEEE J. Quantum Electron. vol. 24, 1664 (1988).
    15. S. Monéger, Y. Baltagi, T. Benyattou, A. Tabata, B. Ragot, G. Guillot, A. Georgakilas, K. Zekentes and G. Halkias, J. Appl. Phys. 74, 1437 (1993).
    16. Stephen Giugni, T. L. Tansley, F. Green, C. Shwe and M. Gal, J. Appl. Phys. 71, 3486 (1992).
    17. L. Aigouy, F. H. Pollak and G. Gumbs, Appl. Phys. Lett. 70, 2562 (1997).
    18. C. F. Li, D. Y. Lin, Y. S. Huang, Y. F. Chen and K. K. Tiong, J. Appl. Phys. 81, 400 (1997).
    19. V. L. Alperovich, A. S. Jaroshevich, D. I. Lubyshev, V. P. Migal, V. V. Preobrazhenskii and B. R. Semjagin, Superlattices and Microstructures vol. 10, 131 (1991).
    20. J. Humlicek, F. Lukes and K. Dloog, Superlattices and Microstructures vol. 9, 133 (1991).
    21. M. Nakayama, T. Doguchi and H. Nishimura, J. Appl. Phys. 72, 2372 (1992).
    22. P. A. M. Rodrigues, F. Cerdeira and J. C. Bean, Phys. Rev. B 46, 15263 (1992).
    23. M. Nakayama, T. Fujita and H. Nishimura, Superlattices and Microstructures vol. 17, 31 (1995).
    24. M. Vergohl, K. Dettmer and F. R. Kessler, J. Appl. Phys. 81, 1434 (1997).
    25. M. Nakayama, T. Nakanishi, K. Okajima, M. Ando and H. Nishimura, Solid State Commun. 102, 803 (1997).
    26. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).
    27. D. I. Lubyshev, P. P. Gonzalez-Borrero, Jr., E. Petitprez, N. La Scala, Jr., and P. Basmaji, Appl. Phys. Lett. 68, 205 (1996).
    28. N. N. Ledentsov, V. A. Shchukin, M. Grundmann, N. Kirstaedter, J. Bohrer, O. Schmidt, D. Dimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kop”ev, S. V. Zaitsev, N. Yu. Gordeev, Zh. I. Alferov, A. I. Borovkov, A. O. Kosogov, S. S. Ruvimov, P. Werner, U. Gosele, and J. Heydenreich, Phys. Rev. B 54, 8743 (1996).
    29. D. I. Lubyshev, P. P. Gonzalez-Borrero, Jr., E. Petitprez, and P. Basmaji, J. Vac Sci Technol. B 14, 2212 (1996).
    30. N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Zh. I. Alferov, Appl. Phys. Lett. 69, 1226 (1996).
    31. R. Bhattacharya, C. Y. Lee, F. H. Pollak and D. M. Schleich, J. Non-Crystalline Solids, 91, 235 (1987).
    32. O. J. Glembocki B. V. Shanabrook, N. Bottka, W. T. Beard and J. Comas, Appl. Phys. Lett., 46, 970 (1985).
    33. O. J. Glembocki, B. V. Shanabrook, N. Bottka, W. T. Beard and J. Comas, Proc. Photo-Optical Instrum. Eng., 524, 86 (1985).
    34. R. N. Bhattacharya, H. Shen, P. Parayanthal, F. H. Pollak, T. Coutts and Aharoni, Phys. Rev., B 37, 4044 (1988); also Pro. Soc. Photo-Optical Instrum. Engineers, (SPIE, Bellingham, 1987), 794, 81 (1987); Solar Cells, 21, 371 (1987)
    35. R. Glosser and N. Bottka, Proc. Soc. of Photo-Optical Instrum. Engineers, (SPIE, Bellingham, 1987), 794, 88 (1987).
    36. H. Shen, F. H. Pollak and J. W. Woodall, J. Vac. Sci. Tech., B 8, 413 (1990).
    37. P. S. Dutta, K. S. Sangunni, H. L. Bhat and Vikram Kumar, Appl. Phys. Lett. 66, 1986 (1995).
    38. H. Nakanishi and K. Wada, Jpn. J. Appl. Phys. 32, 6206 (1993).
    39. M. Sakai and M. Shinohara, J. Appl. Soc. Japn. Vol. 66, 738 (1997).
    40. M. Sydor, and A. Badakhshan and J. R. Engholm, Appl. Phys. Lett. 59, 677 (1991).
    41. H. K. Lipsanen and V. M. Airaksinen, Appl. Phys. Lett. 63, 2863 (1993).
    42. R. N. Bhattacharya, H. Shen, P. Paraynthal, F. H. Pollak, T. Coutts, and H. Aharoni, Phys. Rev. B37, 4044 (1988).
    43. R. L. Ober, J. Pamulaoati, P. K. Bhattacharya and J. E. Oh, J. Electron Mat. 18, 379 (1989).
    44. G. S. Chang, W. C. Hwang, Y. C. Wang, Z. P. Yang, and J. S. Hwang, Accepted to J. Appl. Phys.1999
    45. J. S. Hwang, S. L. Tyan, W. Y. Chou, M. L. Lee, H. H. Lin, T. L. Lee, W. David, and Z. Hang, Appl. Phys. Lett., 64, 3314 (1994).
    46. T. T. Chiang and W. E. Spicer, J. Vac. Sci. Technol., A 7, 724 (1989).
    47. J. Tersoff, Phys. Rev. Lett., 52, 465 (1984).
    48. J. S. Hwang, W. Y. Chou, S. L. Tyan, H. H. Lin and T. L. Lee, Appl. Phys. Lett., 67, 2350 (1995).
    49. J. S. Hwang, W. Y. Chou. M. C. Hung, J. S. Wang and H. H. Lin, J. Appl. Phys. 82, 3888 (1997).
    50. O. J. Glembocki, N. Bottka and J. E. Furneaux, J. Appl. Phys. 57, 432 (1985).
    51. A. J. Shields, P. C. Klipstein, M. S. Skolnick, G. W. Smith and C. R. Whitehouse, Phys. Rev. B 42, 5879 (1990).
    52. N. Jaffrezic-Renault, H. Perrot and C. Nguyen van Huong, Electrochimica Acta 34, 1739 (1989).
    53. P. C. Klipstein and N. Apsley, J. Phys. C: Solid State Phys. 19 6461 (1986).
    54. C. Vazquez-López, H. Navarro, Raúl Aceves, M. C. Vargas and C. A. Menezes, J. Appl. Phys. 58, 2066 (1985).
    55. P. C. Klipstein, P. R. Tapster, N. Apsley, D. A. Anderson, M. S. Skolnick, T. M. Kerr and K. Woodbridge, J. Phys. C: Solid State Phys. 19, 857 (1986).
    56. J. M. Wrobel, U. K. Reddy, L. C. Bassett, J. L. Aubel and S. Sundaram, J. Appl. Phys. 60, 368 (1986).
    57. A. Dodabalapur, V. P. Kesan, D. P. Neikirk, B. G. Streetman, M. H. Herman and I. D. Ward, J. Electron. Mater. 19, 265 (1990).
    58. T. Nishino, J. Cryst. Growth 98, 44 (1989).
    59. Y. S. Huang, S. S. Lin, J. S. Sheu, W. M. Shen and F. H. Pollak, Solid State Commun. 76, 1093 (1990).
    60. I. J. Fritz, T. M. Brennan and D. S. Ginley, Solid State Commun. 75, 289 (1990).
    61. S. Y. Chung, D. Y. Lin, Y. S. Huang and K. K. Tiong, Semicond. Sci. Technol. 11, 1850 (1996).
    62. M. Certier, H. Erguig, M. Soltani and T. Sauder, Physica Status Solidi B 168, 361 (1991).
    63. Y. C. Yin, D. Yan, F. H. Pollak, M. S. Hybertsen, J. M. Vandenberg and J. C. Bean, Phys. Rev. B 44, 5955 (1991).
    64. J. Calatayud, J. Allegre, H. Mathieu, N. Magnea and H. Mariette, Phys. Rev. B 47, 9684 (1993).
    65. T. P. Pearsall, Phys. Rev. B 48, 2795 (1993).
    66. Y. C. Yin, D. Yan, F. H. Pollak, M. S. Hybertsen, J. M. Vandenberg, and J. C. Bean, Surf. Sci. 267, 99 (1992).
    67. C. Armelles and V. R. Velasco, Phys. Rev. B 54, 16428 (1997).
    68. H. Yoshikawa and S. Adachi, Jpn. J. Appl. Phys. Part 1 35, 5946 (1996).
    69. A. S. Lee and P. M. Norris, Rev. Sci. Instrum. 68, 1307 (1997).
    70. V. Bellani, G. Guizzetti, L. Nosenzo, E. Reguzzoni, A. Bosacchi and S. Franchi, Superlattices and Microstructures 13, 147 (1993).
    71. T. Miyazaki and S. Adachi, Jpn. J. Appl. Phys. Part 1 33, 5817 (1994).
    72. S. Ozaki and S. Adachi, J. Appl. Phys. 78, 3380 (1995).
    73. O. J. Glembocki, B. V. Shanabrook, in D.G. Seiler and C. Boston (eds), Semiconductors and Semimetals, Vol. 36, Academic Press, New York, 1992 pp221-292.
    74. A. K. Berry, D. K. Gaskill, G. T. Stauf and Bottka, Appl. Phys. Lett. 58, 2824 (1991).
    75. J. Nukeaw, J. Yanagisawa, N. Matsubara, Y. Fujiwara and Y. Takeda, Appl. Phys. Lett. 70, 84 (1997).
    76. J. Misiewicz, P. Markiewicz, J. Rebisz, Z. Gumienny, M. Panek, B. Sciana and M. Tlaczala, Phys. Stat. Sol. (b) 183, K43 (1994).
    77. S. L. Tyan, Y. C. Wang and J. S. Hwang, Appl. Phys. Lett. 68, 1 (1996).
    78. Y. C. Wang, W. Y. Chou, W. C. Hwang, and J. S. Hwang, Solid State commu. 104, 717 (1997).
    79. H. Shen, F. H. Pollak, and J. M. Woodall, J. Vac. Sci. Technol., B 7, 804 (1989).
    80. H. Shen, Z. Hang, S. H. Pan, F. H. Pollak, T. F. Kuech, J. M. Woodall, and R. N. Sacks, Prodeedings of the 9th International Conference on the Physics of Semiconductors, Warsaw, 1989, ed. by W. Zawadzki (institute of Physics, Polish Academy of Science, Warsaw, 1989) p.1087.
    81. Y. Yin, H. M. Chen, F. H. Pollak, Y. Chen, P. A. Montano, J. M. Woodall, P. D. Kirncher, and D. Pettit, Proceedings of the 20th International Conference on the Physics of Semiconductors, Greece, 1990.
    82. M. Kallergi, B. Roughani, J. Aubel, S. Sundaram, T. Chu, S. Chu and R. Green, J. Vac. Sci. Technol. A 8, 1907 (1990).
    83. J. S. Hwang, Y. C. Wang, W. Y. Chou, and S. L. Tyan, J. Appl. Phys. 83, 2857 (1998).
    84. D. E. Aspnes, Phys. Rev. B 10, 4228 (1974).
    85. T. M. Hsu, Y. C. Tien, N. H. Lu, S. P. Tsai, D. G. Liu and C. P. Lee, J. Appl. Phys. 72, 1065 (1992).
    86. N. Bottka, D. K. Gaskill, R. J. M. Griffiths, R. R. Bradley, T. B. Joyce, C. Ito and D. McIntyre, J. Cryst. Growth 93, 481 (1988).
    87. F. H. Pollak, Proc. Soc. Photo-Optical Instrum. Eng., 276, 142, (1981)
    88. Shun-Lien-chuang Physics of optoelectronic device,John Wiley and Sons,Inc,1995
    89. D. E. Aspnes, in M. Balkanski (ed.), Handbook on Semiconductors, Vol. 2, North-Holland, New York, 1980, p. 109; also Surf. Sci., 37, 418 (1973).
    90. D. E. Aspnes, in M. Balkanski (ed.), Handbook on Semiconductors, Vol. 2, North-Holland, New York, 1980, p. 109; also Surf. Sci., 37, 418 (1973).
    91. D. E. Aspnes, in Handbook on semiconductors, edited by T. S. Moss (North-Holland, New york, 1980), Vol. 2, P. 109.
    92. H. Shen ,and F. H. Pollak,Phys.Rev.B 42,7097(1990)
    93. F. H. Pollak,and H. Shen,J. Crystal Growth 98, 53 (1989)
    94. Chihiro Hamaguchi , Basic Semiconductor Physics, Springer, 2001.
    95. Schwinger, Quantum Mechanics, Springer, 2001.
    96. Eugen Merzbacher, Quantum Mechanics, John Wiley and Sons, Inc ,1998.
    97. J.J.Sakurai, Quantum Mechanics, Addison Wesley,Inc, 1994.
    98. X.Yin, H.-M.Chen, F.H.Pollak et, Appl. Phys. Lett. 58,260 (1991).
    99. X.Yin, H.-M.Chen, F.H.Pollak et, J. Vac. Sci. Technol.A 10,131(1992).
    100. M. Hecht, Phys. Rev. B 41,7910(1990)
    101. M. Hecht, J.Vac. Sci. Technol.B 8,1018(1990)
    102. A. Frova and P. Handler, Phys. Rev. 137, A1857 (1965).
    103. P. Handler, Phys. Rev. 137, A1862 (1965).
    104. R. Glosser and N. Bottka, in Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE, Bellingham, 1987), Vol. 794, p. 88.
    105. N. Bottka, D. K. Gaskill, R. S. Sillmon, R. Henry, and R. Glosser, J. Electron. Matter. 17, 161 (1988).
    106. D. K. Gaskill, N. Bottka, and R. S. Sillmon, J. Vac. Sci. Technol. B 6, 1497 (1988).
    107. H. Shen, and F. H. Pollak, Phys. Rev. B 42, 7097 (1990).
    108. Kruer, William L,The physics of laser plasma interaction, Westview,
    2003.
    109. 王瑤池博士論文 , 國立成功大學, 民國八十八年.(緒論部分內容)
    110. 張廣興博士論文 , 國立成功大學, 民國九十年.(實驗原理部分內容)
    111. 陳俊呈碩士論文, 國立成功大學, 民國九十年. (緒論及實驗原理部分內容)

    下載圖示 校內:2010-07-21公開
    校外:2010-07-21公開
    QR CODE