簡易檢索 / 詳目顯示

研究生: 廖鴻儒
Liao, Hung-Ju
論文名稱: 無刷直流馬達無感測驅動技術於水下載具推進之設計實現
Design and Realization of Brushless DC Motor Sensorless Driving Technique for Underwater Vehicle Propulsion
指導教授: 謝旻甫
Hsieh, Min-Fu
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 99
中文關鍵詞: 無刷直流馬達水下載具無感測驅動
外文關鍵詞: Sensorless Driving, Underwater Vehicle, Brushless DC Motor
相關次數: 點閱:94下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •  一般水下載具之推進器及馬達通常經由一水密纜線及水密接頭,連接至包含於水密壓力殼之驅動電路。由於無刷直流馬達需要霍爾感測器(Hall effect sensor)輸出換相控制訊號,將造成壓力殼水密接頭上的腳位數目與接頭截面積增加。水密接頭極為昂貴,故減少接腳的使用可有效節省成本。此外,亦可降低纜線的重量,同時縮小壓力殼上開孔面積,有效利用壓力殼並增加壓力殼強度,以改善水密與耐壓等問題。故本論文在水下載具整體推進系統設計考量上,採用馬達無感測驅動技術,以改善上述問題。
     
     本論文提出藉由兩組不同截止頻率之低通濾波器,使馬達開迴路啟動時可降低切換為閉迴路換相之門檻轉速;同時討論在何等的條件下,開迴路啟動方可切換為閉迴路換相。在閉迴路換相時,使用線上即時運算之相位補償器,以彌補低通濾波器所造成之換相估測訊號之相位落後。為使馬達運轉速比提升,本文藉由使用具相位超前之硬體電路及軟體程式,使馬達電流相位超前以達成轉速提升,並比較兩者之效能,並藉由實驗,以驗證上述方法。

     Thruster motors of underwater vehicles often connect to driving circuits embedded in a water-sealed pressure case through water-sealed cables and connectors. Brushless DC motors (BLDCM) output commutation signals to the driving circuit by Hall effect sensors. This implies the requirement of a significant size and pin number for the connectors. Connectors for underwater applications are often expensive, and hence reduction of the pin number implies reduction of cost. Moreover, the weight of the cable, as well as the opening sizes for the connectors on the pressure case, can also be reduced. Thus, the pressure case can be more strengthened, and the water-proof capability can be improved. These advantages can be accomplished by adopting the sensorless driving technique.
     
     In the investigated sensorless driving technique, by regulating the cutoff frequencies for a low-pass filter, the rotational speed for switching to the commutation mode at the start-up stage can be decreased. Also, a discussion is made on what condition the motor can be switched from the start-up mode to the commutation mode. In the commutation mode, an on-line phase shifter is used to compensate the error of phase lag caused by the low-pass filter. Finally, in order to increase the speed ratio, a hardware phase-lead circuit with its programming is constructed to allow the current phase to lead the voltage phase and increase the motor speed range. Experiment is conducted to verify the proposed technique.

    中文摘要......................................................................I 英文摘要.................................................................... II 致謝....................................................................... III 目錄.........................................................................IV 表目錄.......................................................................VI 圖目錄..................................................................... VII 符號表.......................................................................XI 第一章 緒論.................................................................. 1 1.1 研究動機與目的........................................................... 4 1.2 論文架構................................................................. 6 第二章 水下載具介紹.......................................................... 7 2.1 有人水下載............................................................... 8 2.2 無人水下載具............................................................. 9 2.3 推進動力來源............................................................ 11 第三章 無刷直流馬達驅動技術................................................. 13 3.1 無刷直流馬達數學模式.................................................... 13 3.2 無刷直流馬達驅動原理.................................................... 16 3.2.1 120 度六步方波驅動.................................................... 17 3.2.2 霍爾感測器工作原理.................................................... 18 3.2.3 變頻器原理............................................................ 22 3.3 無感測驅動之文獻回顧與選用.............................................. 25 3.4 負載特性與無位置感測驅動................................................ 39 第四章 系統架構與設計....................................................... 42 4.1 Microchip dsPIC 2010 之簡介............................................. 43 4.2 啟動與切換策略.......................................................... 46 4.3 換相估測電路............................................................ 49 4.4 硬體相位超前電路........................................................ 57 4.5 相位補償與軟體相位超前.................................................. 58 4.6 系統架構實體與規格...................................................... 60 第五章 系統實現與實驗結果................................................... 64 5.1 馬達啟動與換相時機...................................................... 64 5.2 換相估測訊號............................................................ 71 5.3 相位補償................................................................ 76 5.4 軟體與硬體相位超前...................................................... 79 5.5 有感測與無感測驅動之比較................................................ 86 5.6 實驗結果討論............................................................ 91 第六章 結論與建議........................................................... 93 6.1 結論.................................................................... 93 6.2 建議.................................................................... 94 參考文獻.................................................................... 95 自述........................................................................ 99

    [1] T. D. Batzel and K.Y. Lee, “Electric Propulsion With Sensorless Permanent Magnet Synchronous Motor: Model and Approach,” IEEE Trans. Energy Conversion, vol. 20, no. 4, pp. 818 – 825, Dec. 2005.
    [2] R. C. Becerra, T. M. Jahns, and M. Ehsani, “Four Quadrant Sensorless Brushless ECM drive,” in Proc. IEEE APEC, pp. 202-209., 1991.
    [3] C. H. Chen and M. Y. Cheng, ”A New Sensorless Control Scheme for Brushless DC Motors without Phase Shift Circuit,” in Proc. IEEE PEDS Conf., vol. 2, pp. 1084 – 1089, Nov. 2005.
    [4] K. Y. Cheng and Y. Y. Tzou, “Design of a Sensorless Commutation IC for BLDC Motors,” IEEE Trans. Power Electronics, vol. 18, no. 6, pp. 1365–1375, Nov. 2003.
    [5] H. C. Chen and C. M. Liaw, “Sensorless Control via Intelligent Commutation Tuning for Brushless DC Motor,” IEE Proc. -Electr. Power Applicat., vol. 146, no. 6, pp. 678-684, Nov. 1999.
    [6] P. Damodharan and K. Vasudevan, “Indirect Back-EMF Zero Crossing Detection for Sensorless BLDC Motor Operation,” in Proc. IEEE PEDS Conf., vol. 2, pp. 1107 – 1111, Nov. 2005.
    [7] J. Dunn, “AN898 Determining MOSFET Driver Needs for Motor Drive Applications,” Application Note, DS00898A, Microchip Technology Inc., 2003.
    [8] D. Hanselman, Brushless Permanent Magnet Motor Design, The Writers’ Collective, USA, 2003.
    [9] K. Iizuka, H. Uzuhashi, M. Kano, T. Endo, and K. Mohri, “Microcomputer Control for Sensorless Brushless Motor,” IEEE Trans. Ind. Applicat., vol. 21, no. 4, pp. 595-601, May/June1985.
    [10] T. H. Kim and M. Ehsani, “Sensorless Control of the BLDC Motors From Near Zero to High Speed,” IEEE Trans. on Power Electronics, Vol. 19, no.6, pp.1635-1645, Nov. 2004.
    [11] R. Krishnan and R. Ghosh, “Starting Algorithm and Performance of a PM DC Brushless Motor Drive System with No Position Sensor,” in Proc. IEEE PESC Conf., vol. 2, pp. 815–821, June 1989.
    [12] O. A. Mohammed, S. Liu, and Z. Liu, “A Phase Variable Model of Brushless DC Motors Based on Finite Element Analysis and Its Coupling with External Circuits,” IEEE Trans. Magn., vol. 41, no. 5, pp. 1576-1579, May 2005.
    [13] J. C. Moreira, “Indirect Sensing for Rotor Fux Position of Permanent Magnet AC Motors Operating in a Wide Speed Range,” IEEE Trans. Ind. Applicat., vol. 32, no. 6, pp. 1394-1401, Nov./Dec. 1996.
    [14] S. Ogasawara and H. Akagi, “An Approach to Position Sensorless Drive for Brushless DC Motor,” IEEE Trans. Ind. Applicat., vol. IA-27, no. 5, pp. 928-933, Oct. 1991.
    [15] P. Pillay and R. Krishnan, “Modeling, Simulation, and Analysis of Permanent-Magnet Motor Drives, part 2: The Brushless DC Motor Drive,” IEEE Trans. Ind. Applicat., vol. 25, no. 2, pp. 274-279, Mar./Apr. 1989.
    [16] J. Shao, “An Improved Microcontroller-Based Sensorless Brushless DC (BLDC) Motor Drive for Automotive Applications,” in Proc. IEEE IAS Conf., vol. 4,pp. 2512 – 2517, Oct. 2005.
    [17] P. Snary, B. Bhangu, C.M. Bingham, D.A. Stone and N. Schofield, “Matrix Converters for Sensorless Control of PMSMs and Other Auxiliaries on Deep-Sea ROVs”, IEE Proc.-Electr. Power Applicat., Vol. 152, No. 2, pp. 382-392, March 2005.
    [18] J. X. Shen, Z. Q. Zhu, and D. Howe, “Sensorless Flux-Weakening Control of Permanent Magnet Brushless Machines using Third-Harmonic Back-EMF,” IEEE Trans. Ind. Applicat., Vol. 40, no. 6, pp. 1629-1636, Nov./Dec. 2004.
    [19] G. J. Su and J.W. McKeever, “Low-Cost Sensorless Control of Brushless DC Motors with Improved Speed Range,” IEEE Trans. Power Electronics, vol. 19, no. 2, pp. 296–302, March 2004.
    [20] J. Shao, D. Nolan, M. Teissier, and D. Swanson, “A Novel Microcontroller-Based Sensorless Brushless DC (BLDC) Motor Drive for Automotive Fuel Pumps,” IEEE Trans. on Ind. Applicat., Vol. 39, No. 6, pp. 1734-1740, Nov./Dec. 2003.
    [21] Y. Tsusaka, H. Ishidera and Y. Itoh, “MURS-300 MK II : A Remote Inspection System for Underwater Facilities of Hydraulic Power Plants,” IEEE J. Ocean Eng., Vol. OE-11, No. 3, pp. 358-363, July 1986.
    [22] G. Zhou, Z. Wu, J. Ying, “Unattenuated BEMF Detection for Sensorless Brushless DC (BLDC) Motor Srives,” IPEMC, Vol. 3, Aug. 2004.
    [23] “dsPIC30F Family Reference Manual,” DS70046B, Microchip Technology Inc., 2003.
    [24] “dsPIC30F2010 Data Sheet,” DS70118D, Microchip Technology Inc., 2004.
    [25] “Hall Application Guide”, Application Note, 27701B, Allegro MicroSystem, Inc.
    [26] “MPLAB C30 C Compiler User’s Guide,” DS51284C, Microchip Technology Inc., 2004.
    [27] “TDA5145 Brushless DC Motor Drive Circuit,” Datasheet, IC11, Philips, June 1994.
    [28] Asahi Kasei Electronics, Features & Precautions, http://www.asahi-kasei.co.jp/ake/en/ms/pdf/ic_01e.pdf
    [29] Asahi Kasei Electronics, General informations, http://www.asahi-kasei.co.jp/ake/en/ms/pdf/general_informations.pdf
    [30] Asahi Kasei Electronics, Hall element datasheet, http://www.asahi-kasei.co.jp/ake/en/ms/pdf/hw104a.pdf
    [31] Cyntec, Power Modules, http://www.cyntec.com/products/power.asp
    [32] Federation of American Scientists, http://www.fas.org/man/dod-101/sys/ship/trieste-h96799.jpg
    [33] Fuji Electric Device Technology, Power Modules, http://www.fujielectric.co.jp/eng/fdt/scd/prod_pm.html#aman
    [34] Mitsubishi Electric Semiconductor, Data Sheets, http://www.mitsubishichips.com/Global/common/cfm/eProfile.cfm?FOLDER=/product/power/transferpwmod/tmintelligentpmod/compactipm
    [35] Mitsubishi Electric Semiconductor, Product News, http://www.mitsubishichips.com/Global/new_pro/no.113/p09_1.html
    [36] OilOnline, “ROVs Go Electric, AUVs Go To Work,” http://www.oilonline.com/news/features/oe/20001001.ROVs_Go_.53.asp
    [37] U.S. Submarines Inc., http://wwWussubmarines.com/submarines/Deep.66.pdf
    [38] VideoRay, http://www.videoray.com/?referrer=adgoogle
    [39] Wikipedia, http://en.wikipedia.org/wiki/AS-28
    [40] Woods Hole Oceanographic Institution, Alvin, http://www.whoi.edu/marops/vehicles/alvin/photos/cruise_photos.htm
    [41] 台大工程科學及海洋工程研究所水下載具實驗室, http://www.na.ntu.edu.tw/chinese/research/lab/uv/intro.html
    [42] 行政院南部地區巡防局, http://www.cga.gov.tw/south/equipment/equipment_3.asp
    [43] 抗流型水下遙控載具(ROV)關鍵性技術開發暨系統專用網頁, http://rov.twbbs.org/~rov/
    [44] 白中和譯,Power(大功率) MOSFET/IGBT應用技術,建興文化事業有限公司,台北,2003
    [45] 巫昌圜,內藏式永磁同步馬達弱磁控制於電動載具速度提升之探討與實現,國立成功大學電機工程學系碩士論文,2003
    [46] 孫清華編譯,最新無刷直流馬達,全華科技圖書股份有限公司,台北,2001
    [47] 曾百由,dsPIC數位訊號控制器原理與應用-MPLAB C30開發實務,宏友圖書開發股份有限公司,台北,2005
    [48] 湯淑君譯,深海潛航:海底研究先驅的探險紀實,商周出版,臺北市,2001
    [49] 鄭光耀,無刷直流馬達無感測控制方法之研究與DSP實現技術之發展,國立交通大學電機與控制工程系博士論文,2003
    [50] 鄭勝文,邱逢琛譯,水下技術概論,論國立編譯館,臺北市,1997
    [51] 賴炎生,徐福三,“功率金氧半場效電晶體元件特性及其驅動電路”,第十五卷,第一期,電機月刊,2005

    下載圖示 校內:2008-08-28公開
    校外:2008-08-28公開
    QR CODE