| 研究生: |
呂姿儀 Lu, Zi-Yi |
|---|---|
| 論文名稱: |
研究登革病毒非結構蛋白1在細胞凋亡之中的保護作用 Study on protective role of dengue non-structural protein 1 in cell apoptosis |
| 指導教授: |
張志鵬
Chang, Chih-Peng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 登革病毒 、Beclin-1 、自噬作用 、細胞凋亡 、登革非結構蛋白1 |
| 外文關鍵詞: | Dengue virus, Beclin-1, autophagy, apoptosis, DENV non-structural protein 1 |
| 相關次數: | 點閱:48 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當黃熱病毒科的登革病毒感染人類時會引起嚴重的登革出血熱。而登革病毒的感染會誘導宿主多種的細胞反應,其中包括像是自噬作用和細胞凋亡。已知為了病毒的複製,登革病毒感染時會誘發細胞自噬作用來抵抗早期細胞凋亡的發生,然而其詳細究竟是透過甚麼機制尚未被完全釐清。另外越來越多的研究指出藉著調控相同的自噬蛋白能使自噬作用和細胞凋亡之間具有相互調控的現象。當自噬蛋白組成複合物時,便會活化自噬作用,而細胞得以存活。但相反地當細胞內的鈣蛋白酶(Calpains)或半胱天冬酶(Caspases)活化時,便會將自噬蛋白水解成片段,更進一步的反而會觸發細胞凋亡的發生。在篩選許多重要的自噬蛋白後,我們發現隨著登革病毒引起的細胞凋亡,同時有越來多BECN-1蛋白片段的產生。所以我們想知道在登革病毒的生命週期中,BECN-1是如何參與病毒誘導的自噬作用及細胞凋亡。首先,我們發現到當病毒感染缺乏BECN-1 的細胞時,登革病毒所引起的細胞凋亡會更加嚴重,進而抑制了病毒的複製。另一方面當登革病毒感染時加入泛半胱天冬酶抑制劑 (Z-VAD), BECN-1蛋白片段產生的現象會受到抑制,此結果即表示了在登革病毒生命週期中半胱天冬酶調控了BECN-1 的水解。此外我們也發現到在感染登革病毒的情況下,登革非結構蛋白1 與BECN-1之間有相互作用。而當細胞表現登革非結構蛋白1時,會去促進細胞的自噬作用並抑制蕾莎瓦所引起的BECN-1片段的產生,同時也減少蕾莎瓦所誘發的細胞凋亡。而當細胞缺乏BECN-1 時,登革非結構蛋白1的保護作用就會消失。這些結果告訴我們,BECN-1與登革非結構蛋白1的作用可以維持細胞的生存。根據以上實驗結果,我們了解到BECN-1所調控的自噬作用與細胞凋亡的相互網絡,對於登革病毒複製週期是至關重要的; DENV-NS1具有保護BECN-1免於被切割的能力,並促進自噬作用來對抗早期的細胞凋亡。然而到了登革病毒的複製晚期,因為細胞內大量的CASPs活化,而將BECN-1切成蛋白碎片並誘導細胞凋亡的發生。
Dengue virus (DENV) belongs to Flavivirade and causes severe dengue disease in humans, such as dengue hemorrhagic fever/dengue shock syndrome. DENV infection induces several cell responses, including autophagy and apoptosis. It has been known that DENV infection may trigger autophagy to against early apoptotic cell death and hence maintain viral replication; however, the underlying mechanisms are not fully understood. Growing studies have indicated that there are interplays between autophagy and apoptosis by regulation of the same autophagy-essential proteins. When these autophagy proteins are recruited to promote autophagy, the cells survive. In contrast, cell death signals activate cellular calpain (CAPN) or caspases (CASPs) to cleave these autophagy proteins into fragments, which further triggers apoptosis. After screening several essential autophagy proteins, we found that the fragmentation of BECN-1, a crucial protein of autophagy-initiating complex, was generated in DENV infection triggered apoptosis. Therefore, we went further to examine how BECN-1 participates in DENV-induced autophagy and apoptosis during viral life cycle. Loss of BECN-1 was found to promote apoptotic cell death and inhibit viral replication. Inhibition of CASPs by Z-VAD reduced the cleavage of BECN-1 in DENV-infecting cells, indicating a CASPs-mediated BECN-1 cleavage during DENV infection. We further found that DENV non-structural protein 1 (NS1) was co-localized and interacted with BECN-1 during DENV infection. Overexpression of NS1 reduced BECN-1 fragmentation and facilitated cellar autophagy to protect cells from sorafenib-induced apoptotic death. This cellular protection by NS1 was reduced in BECN-1-deficient cells, indicating that the interaction between BECN-1 and DENV-NS1 helps cell survival. In conclusion, we suggest that the regulation of BECN-1 is crucial for DENV replication. We reveal that DENV-NS1 preserves BECN-1 to promote autophagy function to antagonize early cell apoptosis; however, activated CASPs cleave BECN-1 into fragments to trigger apoptosis in the late stage infection.
1. Diamond, M.S. and T.C. Pierson, Molecular Insight into Dengue Virus Pathogenesis and Its Implications for Disease Control. Cell, 2015. 162(3): p. 488-92.
2. Bhatt, S., et al., The global distribution and burden of dengue. Nature, 2013. 496(7446): p. 504-7.
3. Lee, I.K., J.W. Liu, and K.D. Yang, Clinical characteristics, risk factors, and outcomes in adults experiencing dengue hemorrhagic fever complicated with acute renal failure. Am J Trop Med Hyg, 2009. 80(4): p. 651-5.
4. Guzman, M.G. and S. Vazquez, The complexity of antibody-dependent enhancement of dengue virus infection. Viruses, 2010. 2(12): p. 2649-62.
5. Guzman, M.G., et al., Dengue: a continuing global threat. Nat Rev Microbiol, 2010. 8(12 Suppl): p. S7-16.
6. Henchal, E.A. and J.R. Putnak, The dengue viruses. Clin Microbiol Rev, 1990. 3(4): p. 376-96.
7. Lee, Y.R., et al., Dengue viruses can infect human primary lung epithelia as well as lung carcinoma cells, and can also induce the secretion of IL-6 and RANTES. Virus Res, 2007. 126(1-2): p. 216-25.
8. Lin, C.F., et al., Expression of cytokine, chemokine, and adhesion molecules during endothelial cell activation induced by antibodies against dengue virus nonstructural protein 1. J Immunol, 2005. 174(1): p. 395-403.
9. Reyes-del Valle, J., et al., Dengue Virus Cellular Receptors and Tropism. Current Tropical Medicine Reports, 2014. 1(1): p. 36-43.
10. Rodenhuis-Zybert, I.A., J. Wilschut, and J.M. Smit, Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci, 2010. 67(16): p. 2773-86.
11. Screaton, G., et al., New insights into the immunopathology and control of dengue virus infection. Nat Rev Immunol, 2015. 15(12): p. 745-59.
12. Mukhopadhyay, S., R.J. Kuhn, and M.G. Rossmann, A structural perspective of the flavivirus life cycle. Nat Rev Microbiol, 2005. 3(1): p. 13-22.
13. Nemesio, H. and J. Villalain, Membranotropic regions of the dengue virus prM protein. Biochemistry, 2014. 53(32): p. 5280-9.
14. Lai, C.Y., et al., Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. J Virol, 2008. 82(13): p. 6631-43.
15. Munoz-Jordan, J.L., et al., Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci U S A, 2003. 100(24): p. 14333-8.
16. Falgout, B., et al., Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J Virol, 1991. 65(5): p. 2467-75.
17. Benarroch, D., et al., The RNA helicase, nucleotide 5'-triphosphatase, and RNA 5'-triphosphatase activities of Dengue virus protein NS3 are Mg2+-dependent and require a functional Walker B motif in the helicase catalytic core. Virology, 2004. 328(2): p. 208-18.
18. Stern, O., et al., An N-terminal amphipathic helix in dengue virus nonstructural protein 4A mediates oligomerization and is essential for replication. J Virol, 2013. 87(7): p. 4080-5.
19. Ackermann, M. and R. Padmanabhan, De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase. J Biol Chem, 2001. 276(43): p. 39926-37.
20. Morrison, J. and A. Garcia-Sastre, STAT2 signaling and dengue virus infection. Jakstat, 2014. 3(1): p. e27715.
21. Su, C.I., et al., SUMO Modification Stabilizes Dengue Virus Nonstructural Protein 5 To Support Virus Replication. J Virol, 2016. 90(9): p. 4308-4319.
22. Martina, B.E., P. Koraka, and A.D. Osterhaus, Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev, 2009. 22(4): p. 564-81.
23. Godoi, I.P., et al., CYD-TDV dengue vaccine: systematic review and meta-analysis of efficacy, immunogenicity and safety. J Comp Eff Res, 2017. 6(2): p. 165-180.
24. Halstead, S.B. and M. Aguiar, Dengue vaccines: Are they safe for travelers? Travel Med Infect Dis, 2016. 14(4): p. 378-83.
25. Falconar, A.K., Antibody responses are generated to immunodominant ELK/KLE-type motifs on the nonstructural-1 glycoprotein during live dengue virus infections in mice and humans: implications for diagnosis, pathogenesis, and vaccine design. Clin Vaccine Immunol, 2007. 14(5): p. 493-504.
26. Chuang, Y.C., et al., Dengue Virus Nonstructural Protein 1-Induced Antibodies Cross-React with Human Plasminogen and Enhance Its Activation. J Immunol, 2016. 196(3): p. 1218-26.
27. Rathakrishnan, A., et al., Cytokine expression profile of dengue patients at different phases of illness. PLoS One, 2012. 7(12): p. e52215.
28. Lee, Y.R., et al., Autophagic machinery activated by dengue virus enhances virus replication. Virology, 2008. 374(2): p. 240-8.
29. Panyasrivanit, M., et al., Co-localization of constituents of the dengue virus translation and replication machinery with amphisomes. J Gen Virol, 2009. 90(Pt 2): p. 448-56.
30. Khakpoor, A., et al., A role for autophagolysosomes in dengue virus 3 production in HepG2 cells. J Gen Virol, 2009. 90(Pt 5): p. 1093-103.
31. Catteau, A., et al., Dengue virus M protein contains a proapoptotic sequence referred to as ApoptoM. J Gen Virol, 2003. 84(Pt 10): p. 2781-93.
32. Khunchai, S., et al., Interaction of dengue virus nonstructural protein 5 with Daxx modulates RANTES production. Biochem Biophys Res Commun, 2012. 423(2): p. 398-403.
33. Lin, C.F., et al., Endothelial cell apoptosis induced by antibodies against dengue virus nonstructural protein 1 via production of nitric oxide. J Immunol, 2002. 169(2): p. 657-64.
34. Morchang, A., et al., Cell death gene expression profile: role of RIPK2 in dengue virus-mediated apoptosis. Virus Res, 2011. 156(1-2): p. 25-34.
35. Thepparit, C., et al., Dengue 2 infection of HepG2 liver cells results in endoplasmic reticulum stress and induction of multiple pathways of cell death. BMC Res Notes, 2013. 6: p. 372.
36. Lee, C.J., C.L. Liao, and Y.L. Lin, Flavivirus activates phosphatidylinositol 3-kinase signaling to block caspase-dependent apoptotic cell death at the early stage of virus infection. J Virol, 2005. 79(13): p. 8388-99.
37. Qi, Y., et al., IFI6 Inhibits Apoptosis via Mitochondrial-Dependent Pathway in Dengue Virus 2 Infected Vascular Endothelial Cells. PLoS One, 2015. 10(8): p. e0132743.
38. Huang, J., et al., Coordinated regulation of autophagy and apoptosis determines endothelial cell fate during Dengue virus type 2 infection. Mol Cell Biochem, 2014. 397(1-2): p. 157-65.
39. Amir, M., et al., Inhibition of hepatocyte autophagy increases tumor necrosis factor-dependent liver injury by promoting caspase-8 activation. Cell Death Differ, 2013. 20(7): p. 878-87.
40. Han, J., et al., A Complex between Atg7 and Caspase-9: A NOVEL MECHANISM OF CROSS-REGULATION BETWEEN AUTOPHAGY AND APOPTOSIS. J Biol Chem, 2014. 289(10): p. 6485-97.
41. Luo, S. and D.C. Rubinsztein, Apoptosis blocks Beclin 1-dependent autophagosome synthesis: an effect rescued by Bcl-xL. Cell Death Differ, 2010. 17(2): p. 268-77.
42. Oral, O., et al., Cleavage of Atg3 protein by caspase-8 regulates autophagy during receptor-activated cell death. Apoptosis, 2012. 17(8): p. 810-20.
43. Betin, V.M. and J.D. Lane, Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis. J Cell Sci, 2009. 122(Pt 14): p. 2554-66.
44. Fimia, G.M., et al., Ambra1 at the crossroad between autophagy and cell death. Oncogene, 2013. 32(28): p. 3311-8.
45. Tan, W.J., et al., Calpain 1 regulates TGF-beta1-induced epithelial-mesenchymal transition in human lung epithelial cells via PI3K/Akt signaling pathway. Am J Transl Res, 2017. 9(3): p. 1402-1409.
46. Zhu, X., et al., Cytosolic HMGB1 controls the cellular autophagy/apoptosis checkpoint during inflammation. J Clin Invest, 2015. 125(3): p. 1098-110.
47. Hao, H., et al., Sorafenib induces autophagic cell death and apoptosis in hepatic stellate cell through the JNK and Akt signaling pathways. Anticancer Drugs, 2016. 27(3): p. 192-203.
48. Henkels, K.M. and J.J. Turchi, Cisplatin-induced apoptosis proceeds by caspase-3-dependent and -independent pathways in cisplatin-resistant and -sensitive human ovarian cancer cell lines. Cancer Res, 1999. 59(13): p. 3077-83.
49. Liu, J., et al., OSU-03012, a non-Cox inhibiting celecoxib derivative, induces apoptosis of human esophageal carcinoma cells through a p53/Bax/cytochrome c/caspase-9-dependent pathway. Anticancer Drugs, 2013. 24(7): p. 690-8.
50. Marino, G., et al., Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol, 2014. 15(2): p. 81-94.
51. Cregan, S.P., V.L. Dawson, and R.S. Slack, Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene, 2004. 23(16): p. 2785-96.
52. Nikoletopoulou, V., et al., Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta, 2013. 1833(12): p. 3448-3459.
53. Vitarana, T., et al., Elevated tumour necrosis factor in dengue fever and dengue haemorrhagic fever. Ceylon Med J, 1991. 36(2): p. 63-5.
54. Tan, T.Y. and J.J. Chu, Dengue virus-infected human monocytes trigger late activation of caspase-1, which mediates pro-inflammatory IL-1beta secretion and pyroptosis. J Gen Virol, 2013. 94(Pt 10): p. 2215-20.
55. Cheung, K.T., et al., Involvement of caspase-4 in IL-1 beta production and pyroptosis in human macrophages during dengue virus infection. Immunobiology, 2018. 223(4-5): p. 356-364.
56. Jan, J.T., et al., Potential dengue virus-triggered apoptotic pathway in human neuroblastoma cells: arachidonic acid, superoxide anion, and NF-kappaB are sequentially involved. J Virol, 2000. 74(18): p. 8680-91.
57. Cho, D.H., et al., Caspase-mediated cleavage of ATG6/Beclin-1 links apoptosis to autophagy in HeLa cells. Cancer Lett, 2009. 274(1): p. 95-100.
58. Li, H., et al., Following cytochrome c release, autophagy is inhibited during chemotherapy-induced apoptosis by caspase 8-mediated cleavage of Beclin 1. Cancer Res, 2011. 71(10): p. 3625-34.
59. Wirawan, E., et al., Beclin1: a role in membrane dynamics and beyond. Autophagy, 2012. 8(1): p. 6-17.
60. Fogel, A.I., et al., Role of membrane association and Atg14-dependent phosphorylation in beclin-1-mediated autophagy. Mol Cell Biol, 2013. 33(18): p. 3675-88.
61. Hamasaki, M., et al., Autophagosomes form at ER-mitochondria contact sites. Nature, 2013. 495(7441): p. 389-93.
62. Khromykh, A.A., et al., Efficient trans-complementation of the flavivirus kunjin NS5 protein but not of the NS1 protein requires its coexpression with other components of the viral replicase. J Virol, 1999. 73(12): p. 10272-80.
63. Schlesinger, J.J., et al., Cell surface expression of yellow fever virus non-structural glycoprotein NS1: consequences of interaction with antibody. J Gen Virol, 1990. 71 ( Pt 3): p. 593-9.
64. Kurosu, T., et al., Secreted complement regulatory protein clusterin interacts with dengue virus nonstructural protein 1. Biochem Biophys Res Commun, 2007. 362(4): p. 1051-6.
65. Mackenzie, J.M., M.K. Jones, and P.R. Young, Immunolocalization of the dengue virus nonstructural glycoprotein NS1 suggests a role in viral RNA replication. Virology, 1996. 220(1): p. 232-40.
66. Muller, D.A. and P.R. Young, The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antiviral Res, 2013. 98(2): p. 192-208.
67. Kang, R., et al., The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ, 2011. 18(4): p. 571-80.
68. Oberstein, A., P.D. Jeffrey, and Y. Shi, Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J Biol Chem, 2007. 282(17): p. 13123-32.
69. Feng, W., et al., Molecular basis of Bcl-xL's target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. J Mol Biol, 2007. 372(1): p. 223-35.
70. Adi-Harel, S., et al., Beclin 1 self-association is independent of autophagy induction by amino acid deprivation and rapamycin treatment. J Cell Biochem, 2010. 110(5): p. 1262-71.
71. Furuya, T., et al., Negative regulation of Vps34 by Cdk mediated phosphorylation. Mol Cell, 2010. 38(4): p. 500-11.
72. Winkler, G., et al., Evidence that the mature form of the flavivirus nonstructural protein NS1 is a dimer. Virology, 1988. 162(1): p. 187-96.
73. Akey, D.L., et al., Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system. Science, 2014. 343(6173): p. 881-5.
74. Khadka, S., et al., A physical interaction network of dengue virus and human proteins. Mol Cell Proteomics, 2011. 10(12): p. M111.012187.
75. Chua, J.J., et al., Recombinant non-structural 1 (NS1) protein of dengue-2 virus interacts with human STAT3beta protein. Virus Res, 2005. 112(1-2): p. 85-94.
76. Hafirassou, M.L., et al., A Global Interactome Map of the Dengue Virus NS1 Identifies Virus Restriction and Dependency Host Factors. Cell Rep, 2017. 21(13): p. 3900-3913.
77. Heaton, N.S. and G. Randall, Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe, 2010. 8(5): p. 422-32.
78. McLean, J.E., et al., Flavivirus NS4A-induced autophagy protects cells against death and enhances virus replication. J Biol Chem, 2011. 286(25): p. 22147-59.
79. Lee, Y.R., et al., Dengue virus-induced ER stress is required for autophagy activation, viral replication, and pathogenesis both in vitro and in vivo. Sci Rep, 2018. 8(1): p. 489