| 研究生: |
王鼎智 Wang, Ding-Zhi |
|---|---|
| 論文名稱: |
氯離子在不同混凝土裂縫型式下之傳輸與對鋼筋腐蝕影響之研究 Transportation of Chloride Ion under Different Type of Concrete Cracking and Its Affection to The Corrosion of Steel |
| 指導教授: |
方一匡
Fang, I-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 裂縫 、氯離子 、鋼筋腐蝕 |
| 外文關鍵詞: | Corrosion of steel, Crack, Chloride ion |
| 相關次數: | 點閱:94 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文旨在探討具有裂縫的混凝土受氯離子侵蝕環境之複合劣化。本研究共規劃五種不同裂縫型式之鋼筋混凝土試體,其裂縫型式分別為無裂縫、乾縮裂縫、拉力區內部產生微裂縫、0.1㎜及0.4㎜之人工裂縫。本研究利用JCI硬固混凝土氯離子含量試驗法及DC直流線性極化試驗法,分別探討氯離子於不同裂縫型式下之擴散傳輸路徑及對鋼筋之腐蝕電流密度。
研究結果顯示:(1)在相同情況下,Microcell電流密度遠大於Macrocell電流密度,所以鋼筋的腐蝕程度以Microcell電流密度來主控。在氯離子環境中,一旦混凝土產生肉眼可見裂縫時,則混凝土內部之鋼筋將會受到嚴重的腐蝕;若混凝土內部產生微裂縫時,則鋼筋亦會有一定程度之腐蝕。(2)除了具有乾縮裂縫之試體外,其餘裂縫型式之試體氯離子含量分佈皆為表層含量最高,各取樣點的自由氯離子含量大約為總氯離子含量的75%;具有乾縮裂縫試體的氯離子含量分佈情況則與其產生之乾縮裂縫位置有關。(3)自由氯離子含量較高者所對應的總腐蝕電流密度亦呈現較高,但兩者未成一定之比例關係。(4)氯離子於無裂縫情形與拉力區內部產生微裂縫型式之傳輸路徑為均勻分佈;氯離子於乾縮裂縫型式之傳輸路徑為隨著裂縫離散分布;氯離子於0.1㎜與0.4mm人工裂縫型式之傳輸路徑為以裂縫為中心之鐘形分佈,裂縫寬度越大,則鐘形分佈之趨勢愈明顯。
none
1.Iyoda, T.; Uomoto, Y.; and Yajima, T., ”Development of a System for Evalution of existing Reinforced Concrete Structure,” The 7th East Asia-Pacific Conference on Structure Engineering & Construction, Aug. 27-29, 1999, pp. 1508-1513.
2.王櫻茂,混凝土結構物的耐久性系列-鹼骨材反應(I)‧中性化(II),成大土木結構材料實驗室,台南(2000)。
3.Uhlig, H. H., and Revie, R.W., ”Corrosion and Corrosion Control,” 3rd edition, Wiley Interscience, N. Y., 1985, pp. 28-35.
4.Piron, D. L., ”The Electrochemistry of Corrosion,” Nation Association of Corrosion Engineers, 1991, 29 pp.
5.洪海定,混凝土中鋼筋的腐蝕與保護,混凝土現代科技叢書,第14-28頁(1998)。
6.Hausmann, D. A., ”Steel Corrosion in Concrete:How Does It Occur?” Materials Protection, V. 6, No. 11. 1967, pp. 19-23.
7.Gouda, V. K., ”Corrosion and Corrosion Inhibition of Reinforcing Steel:1—Immersion in Alkaline Solution,” British Corrosion Journal, Sept. 1970, pp. 489-499.
8.Lock, C. E., and Siman, A., ”Electrochemistry of Reinforcing Steel in Salt-Concrete,” Corrosion of Reinforcing Steel in Concrete, ASTM STP 713, American Society for Testing and Materials, 1980, pp. 3-16.
9.Stern, M., ”A Method for Determining Corrosion Rate from Linear Polarization Data,” British Corrosion Journal, Sept. 1958, pp. 122-133.
10.李有豐、陳清泉,結構物檢測評估與補強,財團法人台灣營建研究院,第195-200頁(2000)。
11.Tsuru, T.; Maeda, R.; and Haruyama, S., ”Application of A-C Corrosion Monitor to Localized Corrosion,” Corrosion Engrg., Tech. Rep., Japan Society of Corrosion Engineering, 28, 1979, pp. 638-644.
12.李英儒,「交流電阻抗分析法於脂多醣體檢測之應用」,碩士論文,國立成功大學醫學工程研究所,台南(2001)。
13.Denny, A., ”Principles and Prevention of Corrosion,” 2nd edition, 1997, pp. 109-110.
14.Darkow, R.; Groth, T.; Albrecht, W.; Lutzow, K.; and Paul, D., ”Functionalized Nanoparticles for Endotoxin Binding in Aqueous Solutions,” Biomaterials, 20, 1999, pp. 1277-1283.
15.Hussain, S. E.; Al-Gahtani, A. S.; and Rasheeduzzafar, ”Chloride Threshold for Corrosion of Reinforcement in Concrete,” ACI Materials Journal, V. 93, No. 6, Nov.-Dec. 1996, pp. 534-538.
16.Corbo, J., and Farazam, H., ”Influence of Three Commonly Used Inorganic Compounds on Pore Solution Chemistry and Their Possible Implications to the Corrosion of Steel in Concrete,” ACI Materials Journal, V. 86, No. 5, 1989, pp. 498-502.
17.Suryavanshi, A. K.; Scantlebury, J. D.; and Lyon, S. B., ”Mechanism of Friedel’s Salt Formation in Cements Rich in Tri-Calcium Aluminate,” Cement and Concrete Research, V. 26, No. 5, 1996, pp. 717-727.
18.Corrosion and Protection Working Committee of Japan Concrete Institute,” The Proposal of Standards for Testing and Protection of Corrosion of Reinforced Concrete Structures,” JCI-SC, 1990(in Japanese).
19.Maruya, T.; Matsuoka, Y.; and Tangtermsirikul, S., ”Simulation of Chloride Movement in Hardened Concrete,” Concrete Library of JSCE No. 20, Dec. 1992, pp. 57-70.
20.Nilsson, L.-O., ”Penetration of Chlorides into Concrete Structures-An Introduction and Definitions,” in: L.-O. Nilsson(Ed.), Nordic Miniseminar on Chloride Penetration Into Concrete Structures, Chalmers University of Technology, Goteborg, Sweden, 1993, pp. 7-17.
21.Saetta, A. V.; Scotta, R. V.; and Vitaliani, R. V., ”Analysis of Chloride Diffusion into Partially Saturated Concrete,” ACI Materials Journal, V. 90, No. 5, 1993, pp. 441-451.
22.Sergi, W.; Yu, S. W.; and Page, C. L., ”Diffusion of Chloride and Hydroxyl Ions in Cementitious Materials Exposed To A Saline Environment,” Mag Concrete Research, 1992, pp. 63-69.
23.Tang, L., and Nilsson, L.-O., ”Chloride Binding Capacity and Binding Isotherms of OPC Pastes and Mortars,” Cement and Concrete Research, V. 23, No. 2, 1993, pp. 247-253.
24.Maruya, T.; Matsuoka, Y.; and Tangtermsirikul, S., ”Modeling of Chloride Ion Movement in The Surface Layer of Hardened Concrete,” Concrete Library of JSCE No. 32, Dec. 1998, pp. 69-84.
25.Tsukahara, E., and Uomoto, T., ”Corrosion Rate of Reinforcing Steel Bars in Cracked Concrete,” Transactions of The Japan Concrete Institute V. 22, 2000, pp. 155-166.
26.Bentz, P.; Garboczi, E.; and Lagergren, E., ”Multi-Scale Microstructural Modeling of Concrete Diffusivity:Identification of Significant Variables,” Cement, Concrete, and Aggregates, 20(1), 1998, pp. 129-139.
27.John, L., and Matthew, M., ”Predicting Chloride Diffusion Coefficients from Concrete Mixture Proportions,” ACI Materials Journal, V. 96, No. 6, 1999, pp. 698-702.
28.腐食防食研究委員会,「コンクリート構造物の腐食・防食に關する試験方法ならびに規準(案)」,社団法人 日本コンクリート工學協会,東京,第17-20頁(1991)。
29.腐食防食研究委員会,「コンクリート構造物の腐食・防食に關する試験方法ならびに規準(案)」,社団法人 日本コンクリート工學協会,東京,第21-25頁(1991)。
30.Mohammed, T.; Otsuki, N.; Hisada, M.; and Shibata, T., ”Effect of Carck Width and Bar Types on Corrosion of Steel in Concrete,” Journal of Materials in Civil Engineering, 2001, pp. 194-201.
31.Otski, N.; Miyazato, S.; Diola, N.; and Suzuki, H., ”Influences of Bending Crack and Water-Cement Ratio on Chloride-Induced Corrosion of Main Reinforcing Bars and Stirrups,” ACI Materials Journal, V. 97, No. 4, Jul.-Aug. 2000, pp. 454-464.
32.Annual Book of ASTM Standards, G-5-94, ”Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements,” 1999, 12 pp.
33.林維明,「飛灰水泥砂漿體受氯離子滲透之研討」,結構工程,第八卷,第三期(1993)。
34.Annual Book of ASTM Standards, C1218-92, ”Standard Test Method for Water-Soluble Chloride in Mortar and Concrete,” Vol. 04.02, 1995, pp. 630-632.
35.Kropp, J., ”Extracting and Analyzing Free(Water Soluble)Chlorides and Total Chlorides in Concrete,” Materials and Structure, V. 34, Dec. 2001, pp. 596-598.