| 研究生: |
林志哲 Lin, Chih-Che |
|---|---|
| 論文名稱: |
三軸微型陀螺儀的製造技術與初級分析 Fabrication Technique and Preliminary Analysis of a Tri-axis Micro-Gyroscope |
| 指導教授: |
蔡南全
Tsai, Nan-Chyuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 共振頻率 、面型微加工技術 、微型陀螺儀 |
| 外文關鍵詞: | micro-gyroscope, surface micro-machining, resonance |
| 相關次數: | 點閱:95 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文旨在設計與製作一新型三軸微型陀螺儀,藉由結構上的設計,可同時達到三軸向感測並消除耦合效應,且提升驅動頻率與感測模組之頻寬。 本研究利用拉格朗日方程式(Lagrange’s Equation)推導系統之動態方程式,並針對此系統幾項性能指標包括靈敏度(Sensitivity)、品質因子(Quality Factor)與解析度(Resolution)等做初步分析,且配合模擬軟體ANSYS 探討系統之模態,以控制可操作變數,維持陀螺儀於高性能下運作。 此外,配合面型加工技術,改善製程為單一光罩,避免因多次光罩對準而導致嚴重的結構誤差缺陷,以簡化製程並提高重現性,且降低量化生產成本。 最後,利用整合相關雙取樣電路與差動式電路並加以改良設計,以符合本文提出之三軸微型陀螺儀所需的感測電路。 同時在驅動電路方面,主要是利用自動增益控制迴路與鎖相迴路之組合。 並藉由電腦模擬以確認所設計電路之可行性,與討論不同角速度輸入時感測電路之特性。
The purpose of this thesis is to design and fabricate an innovative tri-axis micro-gyroscope. The proposed micro-gyroscope is capable to detect three-dimensional angular motions simultaneously, reduce coupling effect via novel mechanical design, and improve the bandwidth of sense modes. The dynamics of the tri-axis micro-gyroscope is developed by Lagrange’s equation. Several performance indices are discussed, such as sensitivity, quality factor, resolution etc. ANSYS simulation software is employed concurrently to analyze the mode shapes of the system. In addition, merely a single mask with surface micro-machining is utilized to fabricate the micro-structure so that the alignment errors and fabrication defects due to multiple masks can be reduced. Finally, the modification and combination of the correlation double sampling circuit and differential capacitance circuit are applied for sensing signal processing. On the other hand, the driving circuit composed of automatic gain control loop and phase lock loop is used to stabilize the driving force. The feasibility of the proposed circuit is verified by commercial software HSPICE. The efficacy for various angular rates detection is verified.
[1] J. Soderkvist (1994), “Micromachined gyroscopes,”
Sensors and Actuators A, Vol. A43, No. 1-3,
pp. 65-71.
[2] S. D. Orlosky, H. D. Morris (1995), “A Quartz
Rotational Rate Sensor,” Sensors, pp. 27-31.
[3] K. Maenaka, T. Shiozawa (1993), “Silicon Rate
Sensor Using Anisotropic Etching Technology,”
Digest of Technical Papers, Transducers ‘93,
pp. 642-645.
[4] K. Maenaka, T. Shiozawa (1994), “A Study of
Silicon Angular Rate Sensors Using Anisotropic
Etching Technology,” Sensors and Actuators A,
Vol. 43, pp. 72-77.
[5] M. W. Putty, K. Najafi (1994), “A Micromachined
Vibrating Ring Guroscope,” Solid-State Sensor and
Actuator Workshop, Hilton Head, South Carolina,
pp. 213-220.
[6] W. K. Burns (1998), “Current Status of Fiber-optic
Gyroscopes”, Conference on Optical Fiber
Communication, Technical Digest Series, pp. 370.
[7] C. Acar (2004), “Robust Micromachined Vibratory
Gyroscope,” Ph.D. Thesis, Universuty of California
at Berkeley.
[8] P. Greiff, B. Boxenhom, T. King, L. Niles (1991),
“Silicon Monolithic Micromechanical Gyroscope”,
Tech. Dig. 6th Int. Conf. Transducers’91, San
Francisco, CA, USA, pp. 966-968.
[9] W. A. Clark, R. T. Howe, R. Horowitz (1996),
”Surface micromachined Z-axis vibratory rate
gyroscope,” Technical Digest. Solid-State Sensor
and Actuator Workshop, Hilton Head Island, S.C.,
pp. 283-287.
[10] T. Juneau, A. P. Pisano, J. H. Smith (1997),
”Dual axis operation of a micromachined rate
gyroscope,” Proc., IEEE 1997 Int. Conf. on Solid
State Sensors and Actuators (Tranducers ’97),
Chicago, pp. 883-886.
[11] S. An, Y.S. Oh, K.Y. Park, S.S. Lee, C.M. Song
(1999), “Dual-axis Microgyroscope with Closed-loop
Detection”, Sensors and Actuators, Vol. A73,
pp. 1-6.
[12] S. Lee, S. Park, J. Kim, D. Cho. (2000),
”Surface/Bulk Micromachined Single-Crystalline-
Silicon Micro-Gyroscope,” Journal of
Microelectromechanical Systems, Vol. 9, No. 4,
pp. 557-567.
[13] S. Y. Bae, K. J. Hayworth, K. Y. Yee, K. Shcheglov,
D. V. Wiberg (2002), “High Performance MEMS Micro-
Gyroscope”, Proceedings of SPIE, Vol. 4755,
pp. 316-324.
[14] C. C. Painter, A. M. Shkel (2003), “Active
structural error suppression in MEMS vibratory rate
integrating gyroscopes,” IEEE Sensors Journal,
Vol. 3, No. 5, pp. 595-606.
[15] C. Acar, A. M. Shkel (2005), “An approach for
increasing drive-mode bandwidth of MEMS vibratory
gyroscopes,” Journal of Microelectromechanical
Systems, Vol. 14, No. 3, pp. 520-528.
[16] X. Li, X. Chen, Z. Song, P. Dong, Y. Wang, J. Jiao,
H. Yang (2006), “A Microgyroscope With
Piezoresistance for Both High-Performance Coriolis-
Effect Detection and Seesaw-Like Vibration Control,”
Journal of Microelectromechanical Systems, Vol. 15,
No. 6, pp. 1698-1707.
[17] X. Wu, W. Chen, X. Zhao, W. Zhang (2006),
“Development of a Micromachined Rotating Gyroscope
with Electromagnetically Levitated Rotor,” Journal
of Micromechanics and Microengineering, Vol. 16,
No. 10, pp. 1993-1999.
[18] 吳柏洋 (2007), ”新式平面微型陀螺儀之設計與動態分
析”, 國立成功大學 機械工程學系 碩士論文.
[19] W. O. Davis (2001), “Mechanical Analysis and Design
of Vibratory Micromachined Gyroscopes.”, Ph.D.
Thesis, Universuty of California at Berkeley.
[20] M. J. Madou (2002), “Fundamentals of
Microfabrication: The Science of Miniaturization”,
2nd ed.
[21] A. M. Bowles (2006), “Stress Evolution in Thin Films
of a Polymer”, Ph. D. Thesis, Harvard University
Cambridge, Massachusetts.
[22] http://www.synthdiy.com/show/file/?id=324
[23] 陳忠君 (2002), ”振動式微陀螺儀電路系統之研究”,
國立交通大學 電機與控制工程研究所 碩士論文.
[24] 鍾啟晨 (2004), ” 應用於慣性感測器之微電容感測電路設
計”, 國立清華大學 微機電系統工程研究所 碩士論文.
[25] X. Jiang, J. I. Seeger, M. Kraft, B. E. Boser (2000),
“A Monolithic Surface Micromachined Z-Axis Gyroscope
With Digital Output”, IEEE Symposium on VLSI
Circuits, Digest of Technical Papers, pp. 16-19.