簡易檢索 / 詳目顯示

研究生: 李彩寧
Li, Tsai-Ning
論文名稱: 凝血酶調節素透過牽制α-actinin-4於細胞連接處抑制上皮間質轉化
Thrombomodulin suppresses epithelial-mesenchymal transition by sequestering α-actinin-4 to the cell junction
指導教授: 吳華林
Wu, Hua-Lin
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 75
中文關鍵詞: 凝血酶調節素上皮間質轉化細胞連接α-actinin-4
外文關鍵詞: Thrombomodulin, epithelial-mesenchymal transition, cell-cell junction, α-actinin-4
相關次數: 點閱:71下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   凝血酶調節素(Thrombomodulin, TM)是一個調控上皮細胞連接的第一型穿膜醣蛋白。TM的轉錄在上皮間質轉化(epithelial-mesenchymal transition, EMT)的過程中受到Snail的抑制。α-actinin-4 (ACTN4)是一種絲狀肌動蛋白的結合銜接子,在子宮頸癌細胞中大量表達ACTN4會透過調節Snail表達而誘導細胞進行上皮間質轉化。先前,我們發現TM在上皮細胞與細胞間的連接處與ACTN4有相互作用。然而,關於上皮連接處的TM-ACTN4相互作用在上皮間質轉化的過程中其生物學意義仍不清楚。因此,本篇研究主要探討TM是否可能透過控制ACTN4來抑制上皮間質轉化。我們利用西方墨點法和螢光染色研究TM和ACTN4在上皮間質轉化期間的表達與細胞內之分佈。另外我們也利用功能增益(gain of function)和功能喪失(loss of function)來觀察TM和ACTN4之相互作用在調控形態變化上的生物學意義。首先,我們使用A431細胞(一種表皮樣癌細胞)來觀察TM和ACTN4在上皮間質轉化中的變化。轉化生長因子β(TGF-β)和表皮生長因子(EGF)共同刺激後,A431細胞有明顯的上皮間質轉化以及大量表現ACTN4。單獨使用TGF-β刺激則使得TM表現量降低而vimentin(一種間質指標蛋白)表現量增加。於細胞間連接處與TM有相同分佈的ACTN4在TGF-β和EGF共同刺激時會被釋放至細胞質。在A431細胞中抑制ACTN4的表現並不會改變TM的表達量或其細胞內位置,而在抑制ACTN4表現之後,可以使得細胞在使用TGF-β和EGF刺激誘導上皮間質轉化的情形被抑制。相反地,抑制TM表達會導致細胞形態的改變以及vimentin表達、occludin和上皮鈣黏蛋白(E-cadherin)的位置改變;但同時抑制TM和ACTN4表現則可以減少EMT。另外在A2058黑色素瘤細胞中表達TM會促使細胞呈現聚集生長的細胞型態以及ACTN4的表現位置再重回至細胞與細胞連接處,並且使得vimentin表現量降低、E-cadherin的表現量增加,顯示細胞經歷間質上皮轉化(MET)。相反地,A2058細胞表達TM細胞質功能區(cytoplasmic domain)中和ACTN4結合的序列帶有突變(TM-522RKK524/AAA)的基因則會破壞聚集生長的細胞型態,並使得vimentin表現而E-cadherin減少。因此根據以上的實驗結果,我們認為TM會穩定上皮細胞與細胞間的連接並透過牽制ACTN4於細胞與細胞間的連結處而抑制上皮間質轉化。

    Thrombomodulin (TM) is a type I transmembrane glycoprotein that mediates epithelial cell-to-cell interaction. The transcription of TM is suppressed by Snail during epithelial-mesenchymal transition (EMT). Alpha-actinin-4 (ACTN4) is a filamentous actin-binding adaptor protein that induces EMT by induction of Snail expression when overexpressed ACTN4 in cervical cancer cells. Previously, we showed that TM could interact with ACTN4 at cell junctions of epithelial cells. However, the contribution of TM-ACTN4 interaction at epithelial junctions in EMT remains unclear. Therefore, we investigated whether TM might suppress EMT through control the distribution of ACTN4 in cytosol. The distribution of TM and ACTN4 in cells before and after EMT was investigated using western blot analysis and immunofluorescence microscopy. The biological significance of TM and ACTN4 interaction in regulation of morphological changes was evaluated using gain-of-function and loss-of-function strategies. First, we use A431 cells, an epidermoid carcinoma cell to investigate the role of TM and ACTN4 in EMT. A431 cells exhibited profound EMT phenotype and upregulation of ACTN4 by co-stimulation with transforming growth factor beta (TGF-β) and epidermal growth factor (EGF). TGF-β alone caused TM downregulation along with upregulation of vimentin, a mesenchymal marker. ACTN4, which is co-localized with TM at cell-cell junctions, was released to cytoplasm upon TGF-β and EGF co-stimulation. Knockdown of ACTN4 in A431 cells did not alter either TM expression or subcellular location. However, EMT induced by TGF-β/EGF was suppressed in the cells if ACTN4 expression was knockdown. Conversely, knockdown of TM altered the epithelial cell morphology, vimentin expression, and caused dislocation of occludin and E-cadherin from cell-cell junction to cytoplasm; whereas, knockdown of TM and ACTN4 at the same time reduced EMT phenotype. On the other hand, overexpression of TM in A2058 melanoma cells led to clustering growth phenotype along with concentration of ACTN4 at cell-cell junctions, downregulation of vimentin and upregulation of E-cadherin, suggesting that cells undergo a mesenchymal-to-epithelial transition progress. Reversely, transfection of TM gene with mutation in a putative ACTN4-binding motif in TM cytoplasmic domain disrupted clustering growth phenotype along with upregulation of vimentin and downregulation of E-cadherin. Taken together, these results indicated that TM stabilized epithelial junctions and control the ACTN4 distribution at cell-cell junctions to block EMT.

    Abstract in Chinese 1 Abstract 3 Acknowledgements 5 Index 6 Contents of figure legend 7 Abbreviations 9 Reagents and Chemicals 11 Instruments 15 Introduction 17 Specific Aims 26 Results 27 Discussion 31 References 35 Materials and Methods 44 Figures and Figure legends 53 Appendixes 74

    Agarwal, N., Adhikari, A. S., Iyer, S. V., Hekmatdoost, K., Welch, D. R., & Iwakuma, T. (2013). MTBP suppresses cell migration and filopodia formation by inhibiting ACTN4. Oncogene, 32(4), 462-470. doi:10.1038/onc.2012.69
    Aksenova, V., Tulchinsky, E., Melino, G., Turoverova, L., Khotin, M., Magnusson, K.-E., . . . Tentler, D. (2013). Actin-binding protein alpha-actinin 4 (ACTN4) is a transcriptional co-activator of RelA/p65 sub-unit of NF-kB. oncotarget.
    An, H. T., Yoo, S., & Ko, J. (2016). alpha-Actinin-4 induces the epithelial-to-mesenchymal transition and tumorigenesis via regulation of Snail expression and beta-catenin stabilization in cervical cancer. Oncogene, 35(45), 5893-5904. doi:10.1038/onc.2016.117
    Anderson, J. M., & Van Itallie, C. M. (2009). Physiology and Function of the Tight Junction. Cold Spring Harbor Perspectives in Biology, 1(2), a002584. doi:10.1101/cshperspect.a002584
    Babakov, V. N., Petukhova, O. A., Turoverova, L. V., Kropacheva, I. V., Tentler, D. G., Bolshakova, A. V., . . . Pinaev, G. P. (2008). RelA/NF-κB transcription factor associates with α-actinin-4. Experimental Cell Research, 314(5), 1030-1038. doi:https://doi.org/10.1016/j.yexcr.2007.12.001
    Brabletz, T., Kalluri, R., Nieto, M. A., & Weinberg, R. A. (2018). EMT in cancer. Nat Rev Cancer, 18(2), 128-134. doi:10.1038/nrc.2017.118
    Brembeck, F. H., Rosario, M., & Birchmeier, W. (2006). Balancing cell adhesion and Wnt signaling, the key role of beta-catenin. Curr Opin Genet Dev, 16(1), 51-59. doi:10.1016/j.gde.2005.12.007
    Chen, L. M., Wang, W., Lee, J. C., Chiu, F. H., Wu, C. T., Tai, C. J., . . . Chang, Y. J. (2013). Thrombomodulin mediates the progression of epithelial ovarian cancer cells. Tumour Biol, 34(6), 3743-3751. doi:10.1007/s13277-013-0958-x
    Chen, M. J., Gao, X. J., Xu, L. N., Liu, T. F., Liu, X. H., & Liu, L. X. (2014). Ezrin is required for epithelial-mesenchymal transition induced by TGF-beta1 in A549 cells. Int J Oncol, 45(4), 1515-1522. doi:10.3892/ijo.2014.2554
    Cheng, T. L., Lai, C. H., Chen, P. K., Cho, C. F., Hsu, Y. Y., Wang, K. C., . . . Wu, H. L. (2015). Thrombomodulin promotes diabetic wound healing by regulating toll-like receptor 4 expression. J Invest Dermatol, 135(6), 1668-1675. doi:10.1038/jid.2015.32
    Cho, D., Mier, J. W., & Atkins, M. B. (2009). PI3K/Akt/mTOR Pathway: A Growth and Proliferation Pathway. In R. M. Bukowski, R. A. Figlin, & R. J. Motzer (Eds.), Renal Cell Carcinoma: Molecular Targets and Clinical Applications (pp. 267-285). Totowa, NJ: Humana Press.
    Chou, Y. S., & Yang, M. H. (2015). Epithelial-mesenchymal transition-related factors in solid tumor and hematological malignancy. J Chin Med Assoc, 78(8), 438-445. doi:10.1016/j.jcma.2015.05.002
    Conway, E., & Nowakowski, B. (1993). Biological active thrombomodulin is synthesized by adherent synovial fluid cells and is elevated in synovial fluid of patients with rheumatoid arthritis (Vol. 81).
    Conway, E. M. (2012). Thrombomodulin and its role in inflammation. Semin Immunopathol, 34(1), 107-125. doi:10.1007/s00281-011-0282-8
    Conway, E. M., Nowakowski, B., & Steiner-Mosonyi, M. (1992). Human neutrophils synthesize thrombomodulin that does not promote thrombin-dependent protein C activation. Blood, 80(5), 1254.
    Corallino, S., Malabarba, M. G., Zobel, M., Di Fiore, P. P., & Scita, G. (2015). Epithelial-to-Mesenchymal Plasticity Harnesses Endocytic Circuitries. Front Oncol, 5, 45. doi:10.3389/fonc.2015.00045
    Ding, Z., Liang, J., Lu, Y., Yu, Q., Songyang, Z., Lin, S.-Y., & Mills, G. B. (2006). A retrovirus-based protein complementation assay screen reveals functional AKT1-binding partners. pnas. doi:10.1073/pnas.0606917103
    Fukushima, S., Yoshida, A., Honda, K., Maeshima, A. M., Narita, Y., Yamada, T., . . . Tsuda, H. (2014). Immunohistochemical actinin-4 expression in infiltrating gliomas: association with WHO grade and differentiation. Brain Tumor Pathology, 31(1), 11-16. doi:10.1007/s10014-013-0139-z
    Garrod, D., & Chidgey, M. (2008). Desmosome structure, composition and function. Biochim Biophys Acta, 1778(3), 572-587. doi:10.1016/j.bbamem.2007.07.014
    Gilles, C., Polette, M., Mestdagt, M. l., Nawrocki-Raby, B. a., Ruggeri, P., Birembaut, P., & Foidart, J.-M. (2003). Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Research.
    Gottardi, C. J., Arpin, M., Fanning, A. S., & Louvard, D. (1996). The junction-associated protein, zonula occludens-1, localizes to the nucleus before the maturation and during the remodeling of cell-cell contacts. pnas.
    Hamill, K. J., Hopkinson, S. B., Skalli, O., & Jones, J. C. (2013). Actinin-4 in keratinocytes regulates motility via an effect on lamellipodia stability and matrix adhesions. FASEB J, 27(2), 546-556. doi:10.1096/fj.12-217406
    Harris, T. J., & Peifer, M. (2005). Decisions, decisions: beta-catenin chooses between adhesion and transcription. Trends Cell Biol, 15(5), 234-237. doi:10.1016/j.tcb.2005.03.002
    Hartsock, A., & Nelson, W. J. (2008). Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta, 1778(3), 660-669. doi:10.1016/j.bbamem.2007.07.012
    Hay, E. D. (1995). An overview of Epithelaio-Mensenchymal Transformation. Acta Anat.
    Hayashida, Y., Honda, K., Idogawa, M., Ino, Y., Ono, M., Tsuchida, A., . . . Yamada, T. (2005). E-cadherin regulates the association between beta-catenin and actinin-4. Cancer Res, 65(19), 8836-8845. doi:10.1158/0008-5472.CAN-05-0718
    Hiscox, S., & Jiang, W. G. (1999). Ezrin regulates cell-cell and cell-matrix adhesion, a possible role with Ecadherin/β-catenin. Journal of Cell Science.
    Honda, K. (2015). The biological role of actinin-4 (ACTN4) in malignant phenotypes of cancer. Cell Biosci, 5, 41. doi:10.1186/s13578-015-0031-0
    Honda, K., Yamada, T., Hayashida, Y., Idogawa, M., Sato, S., Hasegawa, F., . . . Hirohashi, S. (2005). Actinin-4 increases cell motility and promotes lymph node metastasis of colorectal cancer. Gastroenterology, 128(1), 51-62. doi:https://doi.org/10.1053/j.gastro.2004.10.004
    Horowitz, N. A., Blevins, E. A., Miller, W. M., Perry, A. R., Talmage, K. E., Mullins, E. S., . . . Palumbo, J. S. (2011). Thrombomodulin is a determinant of metastasis through a mechanism linked to the thrombin binding domain but not the lectin-like domain. Blood, 118(10), 2889-2895. doi:10.1182/blood-2011-03-341222
    Hosaka, Y., Higuchi, T., Tsumagari, M., & Ishii, H. (2000). Inhibition of invasion and experimental metastasis of murine melanoma cells by human soluble thrombomodulin. Cancer Letters, 161(2), 231-240. doi:https://doi.org/10.1016/S0304-3835(00)00617-0
    Hsu, K. S., & Kao, H. Y. (2013). Alpha-actinin 4 and tumorigenesis of breast cancer. Vitam Horm, 93, 323-351. doi:10.1016/B978-0-12-416673-8.00005-8
    Hsu, Y.-Y., Shi, G.-Y., Wang, K.-C., Ma, C.-Y., Cheng, T.-L., & Wu, H.-L. (2016). Thrombomodulin promotes focal adhesion kinase activation and contributes to angiogenesis by binding to fibronectin. oncotarget.
    Hsu, Y. Y., Shi, G. Y., Kuo, C. H., Liu, S. L., Wu, C. M., Ma, C. Y., . . . Wu, H. L. (2012). Thrombomodulin is an ezrin-interacting protein that controls epithelial morphology and promotes collective cell migration. FASEB J, 26(8), 3440-3452. doi:10.1096/fj.12-204917
    Huang, H. C., Shi, G. Y., Jiang, S. J., Shi, C. S., Wu, C. M., Yang, H. Y., & Wu, H. L. (2003). Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain. J Biol Chem, 278(47), 46750-46759. doi:10.1074/jbc.M305216200
    Huang, M. T., Wei, P. L., Liu, J. J., Liu, D. Z., Huey-Chun, H., An, J., . . . Chang, Y. J. (2010). Knockdown of thrombomodulin enhances HCC cell migration through increase of ZEB1 and decrease of E-cadherin gene expression. Ann Surg Oncol, 17(12), 3379-3385. doi:10.1245/s10434-010-1163-4
    Huang, Y.-H., I, C.-C., Kuo, C.-H., Hsu, Y.-Y., Lee, F.-T., Shi, G.-Y., . . . Wu, H.-L. (2015). Thrombomodulin Promotes Corneal Epithelial Wound Healing. PLoS One, 10(3), e0122491. doi:10.1371/journal.pone.0122491
    Huang, Y. H., I, C. C., Kuo, C. H., Hsu, Y. Y., Lee, F. T., Shi, G. Y., . . . Wu, H. L. (2015). Thrombomodulin promotes corneal epithelial wound healing. PLoS One, 10(3), e0122491. doi:10.1371/journal.pone.0122491
    Ikenouchi, J., Umeda, K., Tsukita, S., Furuse, M., & Tsukita, S. (2007). Requirement of ZO-1 for the formation of belt-like adherens junctions during epithelial cell polarization. J Cell Biol, 176(6), 779-786. doi:10.1083/jcb.200612080
    J Kim, S., Shiba, E., Ishii, H., Inoue, T., Taguchi, T., Tanji, Y., . . . Takai, S. I. (1997). Thrombomodulin is a new biological and prognostic marker for breast cancer: An immunohistochemical study (Vol. 17).
    Jackson, M. T., Smith, M. M., Smith, S. M., Jackson, C. J., Xue, M., & Little, C. B. (2009). Activation of cartilage matrix metalloproteinases by activated protein C. Arthritis & Rheumatism, 60(3), 780-791. doi:doi:10.1002/art.24303
    Jiao, W., Miyazaki, K., & Kitajima, Y. (2002). Inverse correlation between E-cadherin and Snail expression in hepatocellular carcinoma cell lines in vitro and in vivo. British Journal of Cancer. doi:10.1038/sj/bjc/6600017
    Jolly, M. K., Ben-Jacob, E., Tripathi, S. C., Celiktas, M., Hanash, S. M., Jia, D., . . . Levine, H. (2016). Stability of the hybrid epithelial/mesenchymal phenotype. oncotarget.
    Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. J Clin Invest, 119(6), 1420-1428. doi:10.1172/JCI39104
    Kao, Y. C., Wu, L. W., Shi, C. S., Chu, C. H., Huang, C. W., Kuo, C. P., . . . Wu, H. L. (2010). Downregulation of thrombomodulin, a novel target of Snail, induces tumorigenesis through epithelial-mesenchymal transition. Mol Cell Biol, 30(20), 4767-4785. doi:10.1128/MCB.01021-09
    Kikuchi, S., Honda, K., Tsuda, H., Hiraoka, N., Imoto, I., Kosuge, T., . . . Yamada, T. (2008). Expression and Gene Amplification of Actinin-4 in Invasive Ductal Carcinoma of the Pancreas. Clinical Cancer Research, 14(17), 5348.
    Kim, C., Ye, F., & Ginsberg, M. H. (2011). Regulation of Integrin Activation. Annual Review of Cell and Developmental Biology, 27(1), 321-345. doi:10.1146/annurev-cellbio-100109-104104
    Kong, J., Yan, G., Di, C., Piao, J., Sun, J., Han, L., . . . Lin, Z. (2016). Ezrin contributes to cervical cancer progression through induction of epithelial-mesenchymal transition. oncotarget.
    Kumeta, M., Yoshimura, S. H., Harata, M., & Takeyasu, K. (2010). Molecular mechanisms underlying nucleocytoplasmic shuttling of actinin-4. J Cell Sci, 123(Pt 7), 1020-1030. doi:10.1242/jcs.059568
    Lamouille, S., Xu, J., & Derynck, R. (2014). Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol, 15(3), 178-196. doi:10.1038/nrm3758
    Li, D., & Mrsny, R. J. (2000). Oncogenic Raf-1 Disrupts Epithelial Tight Junctions via Downregulation of Occludin. The Journal of Cell Biology, 148(4), 791-800. doi:10.1083/jcb.148.4.791
    Liu, P., Yang, P., Zhang, Z., Liu, M., & Hu, S. (2018). Ezrin/NF-κB Pathway Regulates EGF-induced Epithelial-Mesenchymal Transition (EMT), Metastasis, and Progression of Osteosarcoma. Medical Science Monitor, 24, 2098-2108. doi:10.12659/msm.906945
    Lu, Z., Ghosh, S., Wang, Z., & Hunter, T. (2003). Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of β-catenin, and enhanced tumor cell invasion. Cancer Cell, 499-515.
    Maillard, C., Berruyer, M., M Serre, C., Amiral, J., Dechavanne, M., & D Delmas, P. (1993). Thrombomodulin is synthesized by osteoblasts, stimulated by 1,25-(OH)2D3 and activates protein C at their cell membrane (Vol. 133).
    Martin, F. A., Murphy, R. P., & Cummins, P. M. (2013). Thrombomodulin and the vascular endothelium: insights into functional, regulatory, and therapeutic aspects. Am J Physiol Heart Circ Physiol, 304(12), H1585-1597. doi:10.1152/ajpheart.00096.2013
    Matsushita, Y., Yoshiie, K., Imamura, Y., Ogawa, H., Imamura, H., Takao, S., . . . Sato, E. (1998). A subcloned human esophageal squamous cell carcinoma cell line with low thrombomodulin expression showed increased invasiveness compared with a high thrombomodulin-expressing clone – thrombomodulin as a possible candidate for an adhesion molecule of squamous cell carcinoma. Cancer Letters, 127(1), 195-201. doi:https://doi.org/10.1016/S0304-3835(98)00038-X
    McCachren, S. S., Diggs, J., Weinberg, J. B., & Dittman, W. A. (1991). Thrombomodulin expression by human blood monocytes and by human synovial tissue lining macrophages. Blood, 78(12), 3128.
    Meng, W., & Takeichi, M. (2009). Adherens junction: molecular architecture and regulation. Cold Spring Harb Perspect Biol, 1(6), a002899. doi:10.1101/cshperspect.a002899
    Mese, G., Richard, G., & White, T. W. (2007). Gap junctions: basic structure and function. J Invest Dermatol, 127(11), 2516-2524. doi:10.1038/sj.jid.5700770
    Morel, A. P., Hinkal, G. W., Thomas, C., Fauvet, F., Courtois-Cox, S., Wierinckx, A., . . . Puisieux, A. (2012). EMT inducers catalyze malignant transformation of mammary epithelial cells and drive tumorigenesis towards claudin-low tumors in transgenic mice. PLoS Genet, 8(5), e1002723. doi:10.1371/journal.pgen.1002723
    Morris, H. T., & Machesky, L. M. (2015). Actin cytoskeletal control during epithelial to mesenchymal transition: focus on the pancreas and intestinal tract. Br J Cancer, 112(4), 613-620. doi:10.1038/bjc.2014.658
    Nieto, M. A., Huang, R. Y., Jackson, R. A., & Thiery, J. P. (2016). Emt: 2016. Cell, 166(1), 21-45. doi:10.1016/j.cell.2016.06.028
    Ogawa, H., Yonezawa, S., Maruyama, I., Matsushita, Y., Tezuka, Y., Toyoyama, H., . . . Sato, E. (2000). Expression of thrombomodulin in squamous cell carcinoma of the lung: its relationship to lymph node metastasis and prognosis of the patients. Cancer Letters, 149(1), 95-103. doi:https://doi.org/10.1016/S0304-3835(99)00348-1
    Pindon, A., Berry, M., & Hantaı, D. (2000). Thrombomodulin as a New Marker of Lesion-Induced Astrogliosis: Involvement of Thrombin through the G-Protein-Coupled ProteaseActivated Receptor-1. The Journal of Neuroscience.
    Polette, M., Mestdagt, M., Bindels, S., Nawrocki-Raby, B., Hunziker, W., Foidart, J. M., . . . Gilles, C. (2007). Beta-catenin and ZO-1: shuttle molecules involved in tumor invasion-associated epithelial-mesenchymal transition processes. Cells Tissues Organs, 185(1-3), 61-65. doi:10.1159/000101304
    Pujuguet, P., Del Maestro, L., Gautreau, A., Louvard, D., & Arpin, M. (2003). Ezrin regulates E-cadherin-dependent adherens junction assembly through Rac1 activation. Mol Biol Cell, 14(5), 2181-2191. doi:10.1091/mbc.E02-07-0410
    Quick, Q., & Skalli, O. (2010). α-Actinin 1 and α-actinin 4: Contrasting roles in the survival, motility, and RhoA signaling of astrocytoma cells. Experimental Cell Research, 316(7), 1137-1147. doi:https://doi.org/10.1016/j.yexcr.2010.02.011
    Raife, T. J., Lager, D. J., Madison, K. C., Piette, W. W., Howard, E. J., Sturm, M. T., . . . Lentz, S. R. (1994). Thrombomodulin expression by human keratinocytes. Induction of cofactor activity during epidermal differentiation. Journal of Clinical Investigation, 93(4), 1846-1851.
    Ren, Z. X., Yu, H. B., Li, J. S., Shen, J. L., & Du, W. S. (2015). Suitable parameter choice on quantitative morphology of A549 cell in epithelial-mesenchymal transition. Biosci Rep, 35(3). doi:10.1042/BSR20150070
    Reymond, N., d'Agua, B. B., & Ridley, A. J. (2013). Crossing the endothelial barrier during metastasis. Nat Rev Cancer, 13(12), 858-870. doi:10.1038/nrc3628
    Runkle, E. A., Sundstrom, J. M., Runkle, K. B., Liu, X., & Antonetti, D. A. (2011). Occludin localizes to centrosomes and modifies mitotic entry. J Biol Chem, 286(35), 30847-30858. doi:10.1074/jbc.M111.262857
    Salvador, E., Burek, M., & Forster, C. Y. (2016). Tight Junctions and the Tumor Microenvironment. Curr Pathobiol Rep, 4, 135-145. doi:10.1007/s40139-016-0106-6
    Shao, H., Travers, T., Camacho, C. J., & Wells, A. (2013). The carboxyl tail of alpha-actinin-4 regulates its susceptibility to m-calpain and thus functions in cell migration and spreading. Int J Biochem Cell Biol, 45(6), 1051-1063. doi:10.1016/j.biocel.2013.02.015
    Stemmer, V., de Craene, B., Berx, G., & Behrens, J. (2008). Snail promotes Wnt target gene expression and interacts with beta-catenin. Oncogene, 27(37), 5075-5080. doi:10.1038/onc.2008.140
    Suehiro, T., Shimada, M., Matsumata, T., Taketomi, A., Yamamoto, K., & Sugimac, K. (1995). Thrombomodulin Inhibits Intrahepatic Spread in Human Hepatocellular Carcinoma. HEPATOLOGY.
    Tabata, M., Sugihara, K., Yonezawa, S., Yamashita, S., & Maruyama, L. (2006). An immunohistochemical study of thrombomodulin in oral squamous cell carcinoma and its association with invasive and metastatic potential. Journal of Oral Pathology & Medicine, 26(6), 258-264. doi:10.1111/j.1600-0714.1997.tb01234.x
    Takahashi, M., Furukawa, Y., Tsunoda, T., Seiki, M., & Nakamura, Y. (2002). Identification of membrane-type matrix metalloproteinase-1 as a target of the β-catenin/Tcf4 complex in human colorectal cancers. Oncogene. doi:10.1038/sj.onc
    Tang, V. W., & Brieher, W. M. (2012). alpha-Actinin-4/FSGS1 is required for Arp2/3-dependent actin assembly at the adherens junction. J Cell Biol, 196(1), 115-130. doi:10.1083/jcb.201103116
    Tseng, S.-H. (2011). Thrombomodulin mediates contact inhibition to suppress cell growth. 成功大學碩士論文.
    van Roy, F., & Berx, G. (2008). The cell-cell adhesion molecule E-cadherin. Cellular and Molecular Life Sciences, 65(23), 3756-3788. doi:10.1007/s00018-008-8281-1
    Verhagen, H. J. M., Heijnen‐Snyder, G. J., Pronk, A., Vroom, T. M., Vroonhoven, T. J. M. V. V., Eikelboom, B. C., . . . Groot, P. G. D. (1996). Thrombomodulin activity on mesothelial cells: perspectives for mesothelial cells as an alternative for endothelial cells for cell seeding on vascular grafts. British Journal of Haematology, 95(3), 542-549. doi:doi:10.1046/j.1365-2141.1996.d01-1935.x
    Wang1, A., Lu2, C., Ning2, Z., Gao, W., Liang, J., Abbasi, F. S., . . . Liu, J. (2017). Tumor-associated macrophages promote Ezrin phosphorylationmediated epithelial-mesenchymal transition in lung adenocarcinoma through FUT4/LeY up-regulation. oncotarget.
    Wang, M. C., Chang, Y. H., Wu, C. C., Tyan, Y. C., Chang, H. C., Goan, Y. G., . . . Liao, P. C. (2015). Alpha-actinin 4 is associated with cancer cell motility and is a potential biomarker in non-small cell lung cancer. J Thorac Oncol, 10(2), 286-301. doi:10.1097/JTO.0000000000000396
    Wang, Y., Lin, Z., Sun, L., Fan, S., Huang, Z., Zhang, D., . . . Chen, W. (2014). Akt/Ezrin Tyr353/NF-kappaB pathway regulates EGF-induced EMT and metastasis in tongue squamous cell carcinoma. Br J Cancer, 110(3), 695-705. doi:10.1038/bjc.2013.770
    Watabe, Y., Mori, T., Yoshimoto, S., Nomura, T., Shibahara, T., Yamada, T., & Honda, K. (2014). Copy number increase of ACTN4 is a prognostic indicator in salivary gland carcinoma. Cancer Medicine, 3(3), 613-622. doi:10.1002/cam4.214
    Wu, C.-T., Chang, Y.-H., Lin, P.-Y., Chen, W.-C., & Chen, M.-F. (2014). Thrombomodulin expression regulates tumorigenesis in bladder cancer.pdf. BMC Cancer.
    Xu, W., Wang, N. R., Wang, H. F., Feng, Q., Deng, J., Gong, Z. Q., . . . Deng, H. (2016). Analysis of epithelial-mesenchymal transition markers in the histogenesis of hepatic progenitor cell in HBV-related liver diseases. Diagn Pathol, 11(1), 136. doi:10.1186/s13000-016-0587-y
    Yamamoto, S., Tsuda, H., Honda, K., Kita, T., Takano, M., Tamai, S., . . . Matsubara, O. (2007). Actinin-4 expression in ovarian cancer: a novel prognostic indicator independent of clinical stage and histological type. Mod Pathol, 20(12), 1278-1285. doi:10.1038/modpathol.3800966
    Yerkovich, S. T., Roponen, M., Smith, M. E., McKenna, K., Bosco, A., Subrata, L. S., . . . Upham, J. W. (2009). Allergen-enhanced thrombomodulin (blood dendritic cell antigen 3, CD141) expression on dendritic cells is associated with a TH2-skewed immune response. Journal of Allergy and Clinical Immunology, 123(1), 209-216.e204. doi:https://doi.org/10.1016/j.jaci.2008.09.009
    Yonezawa, S., Maruyama, I., Sakae, K., Igata, A., Majerus, P. W., & Sato, E. (1987). Thrombomodulin as a marker for vascular tumors.
    Yonezawa, S., Maruyama, I., Tanaka, S., Nakamura, T., & Sato, E. (1988). Immunohistochemical localization of thrombomodulin in chorionic diseases of the uterus and choriocarcinoma of the stomach. Cancer.
    Yoshii, H., Ito, K., Asano, T., Horiguchi, A., Hayakawa, M., & Asano, T. (2013). Increased expression of alpha-actinin-4 is associated with unfavorable pathological features and invasiveness of bladder cancer. Oncol Rep, 30(3), 1073-1080. doi:10.3892/or.2013.2577
    Zhao, X., Hsu, K. S., Lim, J. H., Bruggeman, L. A., & Kao, H. Y. (2015). alpha-Actinin 4 potentiates nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-kappaB) activity in podocytes independent of its cytoplasmic actin binding function. J Biol Chem, 290(1), 338-349. doi:10.1074/jbc.M114.597260
    Zheng, N., Huo, Z., Zhang, B., Meng, M., Cao, Z., Wang, Z., & Zhou, Q. (2016). Thrombomodulin reduces tumorigenic and metastatic potential of lung cancer cells by up-regulation of E-cadherin and down-regulation of N-cadherin expression. Biochem Biophys Res Commun, 476(4), 252-259. doi:10.1016/j.bbrc.2016.05.105
    Zihni, C., Balda, M. S., & Matter, K. (2014). Signalling at tight junctions during epithelial differentiation and microbial pathogenesis. J Cell Sci, 127(Pt 16), 3401-3413. doi:10.1242/jcs.145029
    郭周斌. (2006). Study on the interaction between Thrombomodulin and its associated proteins. 成功大學碩士論文.

    下載圖示 校內:2023-08-16公開
    校外:2023-08-16公開
    QR CODE