| 研究生: |
詹逸群 Chan, Yi-Chun |
|---|---|
| 論文名稱: |
具有表面微米球修飾結構之氮化鎵系發光二極體之研製 Fabrication of GaN-Based Light Emitting Diodes with Decorated Micro-sphere Surface Structures |
| 指導教授: |
劉文超
Liu, Wen-Chau |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 奈米積體電路工程碩士博士學位學程 MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 氮化鎵 、發光二極體 、微奈米球 、快速對流沉積 、抗反射保護層 、微米孔洞結構 |
| 外文關鍵詞: | GaN, light-emitting diodes, micro- and nano-spheres, rapid convection deposition, anti-reflection layer, microhole array structure |
| 相關次數: | 點閱:117 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究論文中,為了改善氮化鎵系發光二極體的光取出效率 (light extraction efficiency),吾人研製一系列具有表面微米球修飾結構之高品質氮化鎵系發光二極體。分別提出了新穎的材料與元件製程技術,其中包含利用快速對流沉積法研製混合式二氧化矽微奈米球抗反射保護層、二氧化矽微米球填補於氧化鋁鋅導電層之抗反射保護層結構以及微米孔洞陣列之氮化鎵系發光二極體,有效提升氮化鎵系發光二極體的光電轉換效率,提升氮化鎵系發光二極體之性能。本論文對氮化鎵系發光二極體元件之光電特性,以及各種二氧化矽結構之製程方式皆有深入且詳細的研究與探討。
首先,吾人利用快速對流沉積法(Rapid Convection Deposition, RCD)之技術,製備出混合式二氧化矽微米球抗反射保護層結構之氮化鎵系發光二極體,混合式二氧化矽微米球結構可在不影響電性特性之下,改善元件表面粗糙度,同時形成漸層式折射率(graded refractive index)結構,有效降低內部全反射與增加光散射機會。光輸出功率(light output power)與光通量(luminous flux)分別提升18.7%以及28.4%,可有效改善光電轉換效率。
其次,由於氧化鋁鋅材料較氧化銦錫材料成本上低出許多,並具有相似之光性以及電性表現,後續章節皆選用氧化鋁鋅作為透明導電層之材料。藉由上述微米球塗佈技術,將二氧化矽微米球填補於規則性排列孔洞狀氧化鋁鋅透明導電層中,再利用濺鍍方式沉積二氧化矽保護層,增加微米球之附著力,形成具有以二氧化矽微米球填補於氧化鋁鋅導電層之抗反射保護層結構,減少Fresnel光吸收損失,有效改善光取出效率。雖然相較於傳統氮化鎵系發光二極體,此研發元件之順向導通電壓會略為增加,但此研發元件可提升光輸出功率與光通量達17.1%以及23.8%。
最後,探討經電桿式耦合電漿(Inductively Couple Plasma, ICP)蝕刻方式,於氮化鎵表面製備微米孔洞陣列結構,使得發光二極體之主動層(active region)暴露於空氣中,提升了發光二極體之表面區域,經由主動層發出光子在到達被蝕刻的微米孔洞側壁時,有更高機率散射至結構之外
。接著再沉積二氧化矽奈米粒子於元件表面及孔洞側壁,可改善元件表面及孔洞側壁之粗糙度,提升光輸出功率與外部量子效率高達64.8%以及75.0%。本研究論文中所研製的高品質氮化鎵系發光二極體,皆可有效提升光電轉換效率,在商業應用上相當具有潛力。
In this dissertation, for purposes of enhancing the light extraction efficiency (LEE), a series of GaN-Based light-emitting diodes (LEDs) with decorated micro-sphere surface structures are fabricated and studied. Novel materials and device fabrication processes, including fabrication of GaN-Based LEDs with hybrid SiO2 micro-spheres anti-reflection passivation layer by rapid convection deposition, GaN-Based LEDs with specific anti-reflection layer prepared by SiO2 micro-spheres filled in AZO current spreading layer, and GaN-Based LEDs with GaN-etched microhole arrays, are proposed to improve wall-plug efficiency (WPE). Thus, the enhanced performance of GaN-Based LEDs could be obtained. Optical and electrical properties of GaN-Based LEDs are studied and discussed. In addition, fabrication of various SiO2 anti-reflection structures are addressed and discussed in detail.
First, GaN-Based LEDs with hybrid SiO2 micro-spheres anti-reflection passivation layer fabricated by rapid convection deposition (RCD) is studied. Without any degradation of electrical properties, the use of SiO2 anti-reflection passivation layer could improve surface roughness and light scattering. The enhanced light extraction of GaN-Based LEDs could be attributed to graded-refractive-index structure. Thus, the total internal reflection (TIR) could be reduced. As compared with a conventional GaN-Based LED at 20 mA, the studied device exhibits a 18.7% and 28.4% enhancement in light output power and luminous flux.
Second, it is found that aluminum-doped zinc oxide (AZO) has similar electrical conducting and optical transparent properties with indium titanium oxide (ITO). In addition, due to the higher cost of ITO material, AZO was used for being transparent conducting layer (TCL) instead of ITO in this study. The SiO2 micro-spheres were filled in AZO microhole arrays which is formed by rapid convection deposition. Then, SiO2 thin film was deposited on the surface by DC sputter. Due to the presence of SiO2 anti-reflection layer, photons emitted from the active region could be scattered and redirected in arbitrary directions for light extraction. Thus, Fresnel reflection could be reduced. As compared with a conventional GaN-Based LED at 20 mA, the studied device exhibits a 17.1% and 23.8% enhancement in light output power and luminous flux.
Finally, effects of the use of microhole array structure on GaN-Based LEDs are systematically studied and demonstrated in this work. The microhole array structure could expose large active layer on sidewall area, resulting in reduced reflection of light in the microhole array structure. In addition, the use of SiO2 nano-particles deposited on the etched sidewall surface, which could increase opportunity for the light escaping from the inside of LEDs. As compared with a conventional LED at 20 mA, the studied device exhibits 64.8% and 75.0% improvements in light output power and external quantum efficiency.
All of these specific approaches, which are fabricated and studied in this dissertation, could improve performance of GaN-Based LEDs. To compete with traditional light sources in applications of solid-state lighting, high-performance GaN-Based LEDs could be expected to have some success.
1. H. P. Maruska and J. J. Tietjen, “The preparation and properties of vapor-deposited single-crystal-line GaN.” Appl. Phys. Lett., vol 15, pp. 327-329, 1969.
2. Pankove J. I., Miller E. A., Richman D., and Berkeyheiser J. E. “Electroluminescence in GaN” J. Luminescence, vol. 4, pp. 63-66, 1971.
3. Pankove J. I., Miller E. A., and Berkeyheiser J. E. “GaN electroluminescent diodes” RCA Review 32, pp. 383, 1971.
4. Maruska H. P., Rhines W. C., Stevenson D. A. “Preparation of Mg-doped GaN diodes exhibiting violet electroluminescence” Mat. Res. Bull. 7, pp. 777, 1972.
5. Amano H., Kito M., Hiramatsu K., Akasaki I. “P-type conduction in Mg-doped GaN treated with low- energy electron beam irradiation (LEEBI)” Jpn. J. Appl. Phys. 28, pp. 2112, 1989.
6. Nakamura S., Iwasa N., and Senoh M. “Method of manufacturing p-type compound semiconductor” US Patent 5, pp.306, 662, 1994.
7. Schubert E. F., Grieshaber W., and Goepfert I. D. “Enhancement of deep acceptor activation in semiconductors by superlattice doping” Appl. Phys. Lett. 69, pp.3737, 1996.
8. Akasaki I., Amano H., Itoh K., Koide N., and Manabe K. “GaN Based UV/blue light-emitting devices” GaAs and Related Compounds conference, Inst. Phys. Conf. Ser. 129, pp. 851, 1992.
9. Nakamura S., Senoh M., and Mukai T. “P-GaN/n-InGaN/n-GaN double- heterostructure blue-light- emitting diodes” Jpn. J. Appl. Phys. 32, L8, 1993.
10. Nakamura S., Senoh M., and Mukai T. “High-power InGaN/GaN double- heterostructure violet light- emitting diodes” Appl. Phys. Lett. 62, pp. 2390, 1993.
11. Nakamura S., Mukai T., and Senoh M. “Candela-class high-brightness InGaN/AlGaN double- heterostructure blue-light-emitting diodes” Appl. Phys. Lett. 64, pp. 1687, 1994.
12. Nakamura S., Senoh M., Iwasa N., Nagahama S. “High-brightness InGaN blue, green, and yellow light- emitting diodes with quantum well structures” Jpn. J. Appl. Phys. 34, L797, 1995.
13. M. Fukuda, “Optical semiconductor devices, ” Wiley, New York, 1999
14. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes, ” Appl. Phys. Lett., vol. 63,pp. 2174-2176, 1993
15. Y. J. Liu, T. Y. Tsai, C. H. Yen, L. Y. Chen, T. H. Tsai, and W.C. Liu, “Characteristics of a GaN-Based light-emitting diode with an inserted p-GaN/i-InGaN superlattice structure , ” IEEE J. Quantum Electron., vol. 46, pp. 492-498, 2010
16. A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert, and R. F. Karlicek, “Microcavity effects in GaN epitaxial films and in Ag/GaN/sapphire structures, ” App. Phys. Lett,Vol. 70, pp. 2790-2792, 1997.
17. Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-nitride LEDs with self-assembled colloidal-Based microlenses,” IEEE J. Sel. Topics Quantum Electron., vol. 15, no. 4, pp. 1218–1225, 2009.
18. Y. J. Park, H. Y. Kim, J. H. Ryu, H. K. Kim, J. H. Kang, N. Han, M. Han, H. Jeong, M. S. Jeong, and C. H. Hong, “Effect of embedded silica nanospheres on improving the performance of InGaN/GaN light-emitting diodes,” Opt. Express, vol. 19, pp. 2029-2036, 2011.
19. V. Kitaev and G. A. Ozin, “Self-assembled surface patterns of binary colloidal crystals,” Adv. Mater., vol. 15, pp. 75. 2003.
20. X. H. Li, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J., vol. 3, no. 3, pp. 489–499, 2011.
21. H. K. Lee, Y. H. Ko, G. S. R. Raju, and J. S. Yu, “Light-extraction enhancement and directional emission control of GaN-Based LEDs by self-assembled monolayer of silica spheres,” Opt. Express, vol. 20, no. 22, pp. 25058–25063, 2012.
22. Y. N. Xia, B. Gates, Y. D. Yin and Y. Lu, “Monodispersed colloidal spheres: Old materials with new applications,” Adv. Mater., vol. 12, pp. 693-713, 2000.
23. P. Jiang, J. F. Bertone, K. S. Hwang and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mat., vol. 11, pp. 2132- 2140, 1999.
24. Z. Z. Gu, A. Fujishima and O. Sato, “Fabrication of high-quality opal films with controllable thickness,” Chem. Mat., vol. 14, pp. 760-765, 2002.
25. D. Y. Wang and H. Mohwald, “Rapid fabrication of binary colloidal crystals by stepwise spin-coating,” Adv. Mater., vol. 16, pp. 244, 2004.
26. F. Garcia-Santamaria, H. T. Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F. Mesegure and C. Lopez, “Nanorobotic manipulation of microspheres for on-chip diamond architectures,” Adv. Mater., vol. 14, pp. 1144-1147, 2002.
27. X.-H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Display Technol. 9, 324–332, 2013.
28. F. Garcia-Santamaria, H. T. Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N.Shinya, F. Mesegure, and C. Lopez, “Nanorobotic manipulation of microspheres for on-chip diamond architectures,” Adv. Mater., vol. 14, pp. 1144-1147, 2002.
29. L. Li, T. Y. Zhai, H. B. Zeng, X. S. Fang, Y. Bando and D. Golberg, “Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications,” J. Mater. Chem., vol. 21, pp. 40-56, 2011.
30. C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins, “High performance AlGaInP visible light-emitting diodes,” Appl. Phys. Lett., vol. 75, no. 27, pp. 2937–2939, 1990.
31. E. J. Koerperick, J. T. Olesberg, J. L. Hicks, J. P. Prineas, and T. F. Boggess, “High power MWIR cascaded InAs-GaSb superlattice LEDs,” IEEE J. Quantum Electron., vol. 45, pp. 849-853, 2009.
32. E. F. Schubert, “Light Emitting Diodes, ” Cambridge, New York, pp.93, 2006
33. E. F. Schubert, “Light Emitting Diodes, ” Cambridge, New York, pp.150, 2006
34. W. C. Lee, S. J. Wang, K. M. Uang, T. M. Chen, D. M. Kuo, P. R. Wang, and P. H. Wang, “Enhanced light output of vertical-structured GaN-Based light-emitting diodes with TiO2/SiO2 reflector and roughened GaOx surface Film,” Jpn. J. Appl. Phys., vol. 50, 2011.
35. J. K. Liou, Y. J. Liu, C. C. Chen, P. C. Chou, W. C. Hsu, and W. C. Liu, “On a GaN-Based light-emitting diode with an aluminum metal mirror deposited on naturally-textured V-shaped pits grown on the p-GaN surface,” IEEE Electron Device Lett., vol. 33, pp. 227-229, 2012.
36. R. M. Lin, Y. C. Lu, Y. L. Chou, G. H. Chen, Y. H. Lin, and M. C. Wu, “Enhanced characteristics of blue InGaN/GaN light-emitting diodes by using selective activation to modulate the lateral current spreading length,” Appl. Phys. Lett., vol. 92, pp. 261105, 2008.
37. E. F. Schubert, “Light Emitting Diodes, ” Cambridge, New York, pp.150, 2006
38. H. W. Huang, C. C. Kao, J. T. Chu, S. C. Wang, and C. C. Yu, “Improvement of InGaN–GaN light-emitting diode performance with a nano- roughened p-GaN surface,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 983–985, 2005.
39. J. H. Lee, J. T. Oh, S. B. Choi, Y. C. Kim, H. I. Cho, and J. H. Lee, “Enhancement of InGaN-Based vertical LED with concavely patterned surface using patterned sapphire substrate,” IEEE Photon. Technol. Lett., vol. 20, no. 5, pp. 345–347, 2008.
40. Z. J. Tsai, J. K. Liou, and W. C. Liu, “Enhanced Performance of a GaN-Based LED Prepared by an Anodized Aluminum Oxide-Nanoporous Pattern Sapphire Substrate,” IEEE Electron Devices Lett., vol. 34 , pp. 909-911, 2013.
41. J. K Liou, C. C. Chen, P. C. Chou, Z. J. Tsai, Y. C. Chang, and W. C. Liu, “Implementation of a High-Performance GaN-Based Light-Emitting Diode Grown on a Nanocomb-Shaped Patterned Sapphire Substrate,” IEEE J. Quantum Electron., vol. 50, pp. 973-980, 2014.
42. Y. C. Chang, J. K. Liou, and W. C. Liu, “Improved Light Extraction Efficiency of a High-Power GaN-Based Light-Emitting Diode With a Three-Dimensional-Photonic Crystal (3-D-PhC) Backside Reflector,” IEEE Electron Devices Lett., vol. 34 , pp. 777-779, 2013.
43. S. J. So, C. B. Park, “Improvement of brightness with Al2O3 passivation layers on the surface of InGaN/GaN-Based light-emitting diode chips, ” Thin Solid Films, pp. 2031-2034, 2008.
44. R. M. Lin, Y. C. Lu, Y. L. Chou, G. H. Chen, Y. H. Lin, and M. C. Wu, “Enhanced characteristics of blue InGaN/GaN light-emitting diodes by using selective activation to modulate the lateral current spreading length,” Appl. Phys. Lett., vol. 92, pp. 261105, 2008.
45. P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir, vol. 24, no. 21, pp. 12150–12157, 2008.
46. R.D. Deegan, O. Bakajin, T.F. Dupont, G.Huber, S.R. Nagel, & T.A., “Capillary flow as the cause of ring stains from dried liquid drops”, Nature 389, pp. 827-829, 1997.
47. Wayner, P. C., “Interfacial profile in the contact line region of a finite contact- angle system ”, J. Colloid Interface Sci., pp. 495–500, 1980.
48. Stephan, K.; Zhong, L. C.; Stephan, “Influence of capillary pressure on the evaporation of thin liquid films,” P. Heat Mass Trans., pp. 467– 472, 1995.
49. X. H. Li, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J., vol. 3, no. 3, pp. 489–499, Jun. 2011.
50. Y. J. Liu, C. H. Yen, L. Y. Chen, T. H. Tsai, T. Y. Tsai, and W. C. Liu, “On a GaN-Based light-emitting diode with a p-GaN/i-InGaN superlattice structure,” IEEE Electron Device Lett., vol. 30, pp. 1149-1151, 2009.
51. P. Zhu, G. Liu, J. Zhang, and N. Tansu, “FDTD Analysis on Extraction Efficiency of GaN Light-Emitting Diodes With Microsphere Arrays,” J. Disp. Technol., Vol. 9, No. 5, pp. 317-323, 2013.
52. Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, T. Y. Tsai, and W. C. Liu, “On a GaN-Based light-emitting diode with an indium-tin-oxide (ITO) direct-ohmic contact structure,” IEEE Photonics Technol. Lett., vol. 23, pp. 1037-1039, 2011.
53. Y. J. Liu, T. Y. Tsai, C. H. Yen, L. Y. Chen, T. H. Tsai, C. C. Huang, T. Y. Chen, C. H. Hsu, and W. C. Liu, “Performance investigation of GaN-Based light-emitting diodes with tiny misorientation of sapphire substrates,” Opt. Express, vol. 18, pp. 2729-2742, 2010.
54. Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, S. Y. Chang, K. W. Lin, J. K. Liou, and W. C. Liu, “Improved performance of GaN-Based light-emitting diodes by using short-period superlattice structures,” Prog. Nat. Sci., vol. 20, pp. 70-75, 2010.
55. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-Based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, pp. 855-857, 2004.
56. M. A. Mastro, R. T. Holm, and N. D. Bassim, C. R. Eddy, R. L. Henry, M. E. Twigg and A. Rosenberg, “Wurtzite III-nitride distributed Bragg reflectors on Si(100) substrates,” Appl. Phys. Lett., vol. 45, pp. L814-L816, 2006.
57. C. H. Yen, Y. J. Liu, K. H. Yu, P. L. Lin, T. P. Chen, L. Y. Chen, T. H. Tsai, N. Y. Huang, C. Y. Lee, and W. C. Liu, “On an AlGaInP-Based light-emitting diode with an ITO direct ohmic contact structure,” IEEE Electron Device Lett., vol. 30, pp. 359-361, 2009.
58. J. K. Liou, C. C. Chen, P. C. Chou, Z. J. Tsai, Y. C. Chang, and W. C. Liu, “Implementation of a high-performance GaN-based light-emitting diode grown on a nanocomb-shaped patterned sapphire substrate,” IEEE J. Quantum Electron., vol. 50, pp. 973-980, 2014.
59. A. David, H. Benisty, and C. Weisbuch, “Optimization of light-diffracting photonic-crystals for high extraction efficiency LEDs,” J. Disp. Technol., vol. 3, pp. 133-148, 2007.
60. Y. S. Lin and J. A. Yeh, “GaN-based light-emitting diodes grown on nanoscale pattern sapphire substrates with void-embedded cortex-like nanostructures,” Appl. Phys.Express, vol. 4, pp. 092103, 2011.
61. S. J. Chang, C. F. Shen, M. H. Hsieh, C. T. Kuo, T. K. Ko, W. S. Chen, and S. C. Shei, “Nitride-based LEDs with a hybrid Al mirror+TiO2/SiO2 DBR backside reflector,” J. Lightwave Technol., vol. 26, pp. 3131-3136, 2004.
62. J. Zhao, S. Xie, S. Han, Z Yang, L. Ye, T. L. Yan, “Organic light-emitting diodes with AZO films as electrodes,” Synth. Met., vol. 114, pp. 251-254, 2000.
63. S. Oh, P. C. Su, Y. J. Yoon, S. Cho, J. H. Oh, T. Y. Seong, and K. K. Kim, “Nano-patterned dual-layer ITO electrode of high brightness blue light emitting diodes using maskless wet etching,” Opt. Express, vol. 21, pp. 970-976, 2013.
64. D. S. Leem, T. Lee, and T. Y. Seong, “Enhancement of the light output of GaN-based light-emitting diodes with surface-patterned ITO electrodes by maskless wet-etching,” Solid-State Electron. vol. 51, pp. 793, 2007.
65. D. Steigerwald, S. Rudaz, H. Liu, R. S. Kern, W. Götz, and R. Fletcher, “III-V nitride semiconductors for high performance blue and green light emitting devices ,” JOM, vol. 49, pp. 18-23, 1997.
66. T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl. Phys., vol. 38, pp. 3976–3981, 1999.
67. R. M. Lin, Y. C. Lu, Y. L. Chou, G. H. Chen, Y. H. Lin, and M. C. Wu, “Enhanced characteristics of blue InGaN/GaN light-emitting diodes by using selective activation to modulate the lateral current spreading length,” Appl. Phys. Lett, Vol. 92, pp. 261105, 2008.
68. Y. L. Chou, R. M. Lin, M. H. Tung, C. L. Tsai, J. C. Li, I. C. Kuo, and M. C. Wu, “Improvement of surface emission for GaN-based light-emitting diodes with a metal-via-hole structure embedded in a reflector,” IEEE Photon. Technol. Lett., vol. 23, pp. 393-395, 2011.
69. M. V. Bogdanov, “Effect of ITO spreading layer on performance of blue light-emitting diodes,” Phys. Status Solidi, vol. 8, pp. 2127–2129, 2010.
70. Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, J. K. Liou, T. Y. Tsai, and W. C. Liu, “Implementation of an Indium-Tin-Oxide (ITO) Direct-Ohmic Contact Structure on a GaN-based Light Emitting Diode,” Opt. Express, vol. 19, pp. 14662-14670, 2011.
71. G. Shen, X. Da, X. Guo, Y. Zhu, and N. Niu, “Effects of the passi- vation layer deposition temperature on the electrical and optical prop- erties of GaN-based light-emitting diodes,” J. Lumin., vol. 127, no. 2, pp. 441–445, Dec. 2007.
72. F. I. Lai et al., “Extraction efficiency enhancement of GaN-based light- emitting diodes by microhole array and roughened surface oxide,” IEEE Electron Dev. Lett., vol. 30, no. 5, pp. 496–498, May 2009.
73. E. O. Samwel, P. R. Bissell, and J. C. Lodder, “Remanent magnetic measurements on perpendicular recording materials with compensation for demagnetizing fields,” J. Appl. Phys., vol. 73, pp. 1353-1359, 1993.
74. H. W. Choi, C. W. Jeon, and M. D. Dawson, “InGaN Microring Light-Emitting Diodes,” IEEE Photon. J., vol. 16, no. 1, pp. 33–35, Jun. 2004.
75. Y. T. Wang, T. Chou, L. Y. Chen, Y. F. Yin, Y. C. Lin, and J. J. Huang, “On the Radiation Profiles and Light Extraction of Vertical LEDs With Hybrid Nanopattern and Truncated Microdome Surface Textures , ” IEEE J. Quantum Electron., vol. 49, no.1, pp. 11-16, 2013
76. C. F. Lai, C. H. Chao, and H. C. Kuo, “Anisotropy of Light Extraction Emission with High Polarization Ratio from GaN-based Photonic Crystal Light-emitting Diodes, ” Recent Optical and Photonic Technologies. Rijeka, Croatia: InTech Press, 2010
77. C. M. Yang, D. S. Kim, S. G. Lee, J. H. Lee, Y. S. Lee, and J. H. Lee, “Improvement in Electrical and Optical Performances of GaN-Based LED With SiO2/Al2O3 Double Dielectric Stack Layer,” IEEE Electron Device Lett., vol. 33, no. 4, pp. 564-566, 2012.
78. P. Zuo et al., “Improved optical and electrical performances of GaN- based light emitting diodes with nano truncated cone SiO2 passivation layer,” Opt Quant Electron, vol. 48, pp. 288, May 2016.
79. H. Guo et al., “High performance GaN-based LEDs on patterned sapphire substrate with patterned composite SiO2/Al2O3 passivation layers and TiO2/Al2O3 DBR backside reflector,” Opt. Express, vol. 21, no.18 , pp. 21456, 2013.
80. J. K. Kim et al., “Visible Color Tunable Emission in Three-Dimensional Light Emitting Diodes by MgO Passivation of Pyramid Tip,” ACS Appl. Mater. Interfacs , vol. 7, pp. 27743-27748, 2015.
81. H. Y. Liu et al., “Al2O3 Passivation Layer for InGaN/GaN LED Deposited by Ultrasonic Spray Pyrolysis,” IEEE Photon. Technol. Lett., vol. 26, no. 12, pp. 1243–1246, 2014
82. T. H. Hsueh, J. K. Sheu, H. W. Huang, J. Y. Chu, C. C. Kao, and H. C. Kuo, “Enhanced in Light Output of InGaN–Based Microhole Array Light-Emitting Diodes,” IEEE Photon. Technol. Lett., vol. 17, no. 6, pp. 1163–1165, 2005.
83. J. K. Huang, C. Y. Liu, T. P. Chen, H. W. Huang, F. I Lai, P. T. Lee, C. H. Lin, C. Y. Chang, T. S. Kao, and H. C Kuo, “Enhanced Light Extraction Efficiency of GaN-Based Hybrid Nanorods Light-Emitting Diodes,” IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 4, pp. 6000107, 2015.
84. N. C. Chen, C. M. Lin, Y. K. Yang, C. Shen, T. W. Wang, and M. C. Wu, “Measurement of junction temperature in a nitride light-emitting diode,” Jpn. J. Appl. Phys., vol. 47, pp. 8779-8782, 2008.
85. Y. L. Chou, R. M. Lin, M. H. Tung, C. L. Tsai, J. C. Li, I. C. Kuo, and M. C. Wu, “Improvement of surface emission for GaN-based light-emitting diodes with a metal-via-hole structure embedded in a reflector,” IEEE Photon. Technol. Lett., vol. 23, pp. 393-395, 2011.
86. Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett., vol. 85, pp. 2163-2165, 2004.
校內:2021-08-01公開