簡易檢索 / 詳目顯示

研究生: 鄭仲堯
Cheng, Chung-Yao
論文名稱: 台灣四草河口流紋蜷 Thiara riqueti (Grateloup, 1840) (Mesogastropoda, Thiaridae) (中腹足目、錐蜷科)生命表與族群動態之研究
Life Tables and Population Dynamics of Thiara riqueti (Grateloup, 1840) (Mesogastropoda, Thiaridae) in the Su-Tsao Estuary, Tainan, Taiwan
指導教授: 王建平
Wang, Jiang Ping
齊心
Chi, Hsin
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物學系
Department of Biology
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 115
中文關鍵詞: 生命表流紋蜷
外文關鍵詞: life table, Thiara riqueti
相關次數: 點閱:156下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究於2000-2004年間在台灣台南四草野生動物保護區探討流紋蜷 Thiara riqueti (Grateloup, 1840) (Mesogastropoda, Thiaridae) 的生命表、族群動態與環境因子的關係。以age-stage, two-sex life table 為主,探討實驗室中不同溫度 (10℃、18℃、25℃、30℃) 與鹽度 (0.2﹪、1.0﹪、2.0﹪、2.5﹪、3.0﹪、4.0﹪、5.0﹪) 以及野外環境中之流紋蜷生命表。結果顯示在實驗室內以30℃與鹽度2.0﹪條件下為最佳,其內在增長率 (the intrinsic rate of increase, r)、終極增長率 (the finite rate of population increase, λ)、淨生殖率 (the net reproductive rate, Ro) 和平均世代時間 (the mean generation time, T) 分別為0.1412 week-1、1.1516 week-1、56.33 子代數和28.65 weeks。野外生命表中以不感潮的樣區 B 為最佳,其內在增長率、終極增長率、淨生殖率和平均世代時間分別為0.1441 week-1、1.155 week-1、5.50子代數和11.84 weeks。由實驗結果之流紋蜷族群參數值 (population parameters) 顯示族群生殖策略應屬於r型。流紋蜷族群在四草河口體長超過4mm才有懷孕紀錄。野外懷孕率之高峰期主要集中於夏、秋兩季而且以體長 9.0-14.0mm的貝類為主要生殖族群。溫度增高時會提高其生殖率,但高於鹽度4.0﹪時,生殖率會降低。由多變量逐步複迴歸分析結果顯示生殖率受到溫度與鹽度影響 (r2=0.866, P<0.05)。於四草河口地區野外族群高峰期主要出現在夏季與秋季並顯示出季節性差異,各棲地間,在鹽沼、溝渠和魚塭樣區(A, B, C, H 和I)中之族群量較穩定。嘉南大排樣區 (G)、運河鹽道 (E和F) 和四草大橋樣區 (J) 因為直接受到潮汐與水流等環境因子影響,所以流紋蜷族群明顯較低。多變量逐步複迴歸分析結果顯示環境因子對樣區 (A, B和C)中流紋蜷族群有明顯影響,樣區 A 中主要受到硫酸鹽、溶氧和pH值的影響 (r2=0.486, P=0.000),樣區 B 中主要以鹽度與pH值為主 (r2=0.471, P=0.002),樣區 C中主要以硝酸鹽與鹽度為主 (r2=0.507, P=0.006)。本研究顯示透過生命表之研究,可以解釋四草地區流紋蜷族群動態受到河口生態系中不同棲地類型與環境因子的影響。

      The cohort life table and the population dynamics of the gastropoda snail Thiara riqueti (Grateloup, 1840) in Su-Tsao estuary in Tainan and Taiwan were studied during July 2000 and 2004. The cohort life histories of the Thiara riqueti at four temperature and seven salinity combinations were analyzed based on the age-stage, two-sex life table to take into consideration the variable development rates among individuals. At 30℃ and salinity 2.0%, the intrinsic rate of increase (r) is 0.1412 week-1, while the finite rate of population increase (λ) is 1.1516 week-1. The net reproductive rate (Ro) is 56.33 offspring and the mean generation time (T) is 28.65 weeks. These population parameters shows that temperature 30℃ and salinity 2.0% is the best condition among all treatments. Among different wild habitats, the habitat B offers the best condition for T. riqueti and the intrinsic rate of increase, the finite rate of population increase, the net reproductive rate and the mean generation time are 0.1441 week-1、1.155 week-1、5.50 offspring and 11.84 weeks, respectively. The population parameters suggested that T. riqueti is r-strategist. This species shown a single peak of recruitment per annum during the period of summer to fall. In Su-Tsao estuary, only female T. riqueti were observed, as is typical of most population of this species. Snails with shell length over 4.0mm had full-developed larvae in the brood pouch during the study period. Temperature and salinity are the major environmental factors for fecundity. The lowest densities were found in the habitats E, F and G and the highest ones in habitats A, B, C and I during the study period. The population densities in habitats A, B and C were influenced by the sulfate, dissolved oxygen, pH, salinity and nitrate during 2000-2001. Evidence was found that the life table and population dynamics of T. riqueti were dependent on the seasonal variation of environmental factors of the estuary hydraulic regime.

    CHINESE ABSTRACT I ENGLISH ABSTRACT III ACKNOWLEDGEMENT V LIST OF TABLES VIII LIST OF FIGURES IX Introduction 1 Ecosystem of study area 4 Materials and Methods 6 Laboratory experiments 6 Life Table 6 Wild life table 7 Fecundity responses to change in temperature and salinity 7 Field experiments 8 The change of population structure of T. riqueti in field 8 Population dynamic of snails at different habitats 8 Fecundity of the wild population 9 The movement of T. riqueti population 10 Data analysis 10 Life Table Analysis 10 Environmental factors analysis 11 Results 12 Life Table 12 Wild life table 13 Fecundity responses to change in temperature and salinity 14 Density, fecundity and size structure of field population 14 Monthly Thiara riqueti population dynamic and environmental factors variation 15 Correlation between environmental factors and population dynamics 16 Pregnant rate of wild snails 16 The hibernated population and vertical movement of snails in soil 17 Discussion 18 Life Table 18 Fecundity and population variation 20 Correlation between environmental factors and population dynamics 21 Migration 23 References 25

    Abril, G.; Etcheber, H.; Delille, B.; Frankignoulle, M.; Borges, A.V., 2003. Carbonate dissolution in the turbid and eutrophic Loire estuary. Mar. Ecol. Prog. Ser. 259, 129-138.
    Begon, M.; Harper, J.l.; Townsend, C.R., 1996. Ecology, 3rd ed. Blackwell science. USA.
    Caswell, H., 1989. Analysis of life table response experiments Ι. Decomposition of effects on population growth rate. Ecological modeling. 46, 221-237.
    Caswell, H., 1996. Analysis of life table response experiments ΙΙ. Alternative parameterizations for size- and stage- structured models. Ecological modeling. 88, 73-82.
    Chambers, R.M.; Fourqurean, J.W.; Hollibaugh, J.T.; Vink, S.M., 1995. Importance of terrestrially-derived, particulate phosphorus to phosphorus dynamics in a west coast estuary. Estuaries. 18 (3), 518-526.
    Chaniotis, B.N.C.; Butler Jr., J.M.; Ferguson, F.; Jobin, W.R., 1980. Presence of males in Puerto Rican Thiara (Tarebia) Granifera (Gastropoda: Thiaridae), a snail thought to be parthenogenetic. Carib. J. Sci. 16, 1-4.
    Chi, H.; Liu, H., 1985. Two new methods for the study of insect population ecology. Bull. Inst. Zool., Academia Sinica. 24 (2), 225-240.
    Chi, H., 1988. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 17 (1), 26-34.
    Chi, H., 1990. Timing of control based on the stage structure of pest populations: a simulation approach. J. Econ. Entomol. 83 (4), 1143-1150.
    Chi, H., 1997. Age-stage, two-sex life table analysis. http://140.120.197.173/Ecology/Download/Twosex.zip.
    Chi, H.; Yang, T.C., 2003. Two-sex life table and predation rate of Propylaea japonica Thunberg (Coleoptera: Coccinellidae) fed on Myzus persicae (Sulzer) (Homoptera: Aphididae). Environ. Entomol. 32 (2), 327-333.
    Dudgeon, D., 1982. The life history of Brotia hainanensis (Brot, 1872) (Gastropoda: Prosobranchia: Thiaridae) in a tropical forest stream. Zoological Journal of the Linnean Society. 76, 141-154.
    Dudgeon, D., 1983. The effects of water level fluctuations on a gently shelving marginal zone of Plover Cove Reservior, Hong Kong. Arch. Hydrobiol. 2 (3), 163-196.
    Dudgeon, D., 1986. The life cycle, population dynamics and productivity of Melanoides tuberculata (Muller, 1774) (Gastropoda: Prosobranchia: Thiaridae) in Hong Kong. J. Zool., Lond.(A). 208, 37-53.
    Dudgeon, D., 1989. Ecological strategies of Hong Kong Thiaridae (Gastropoda: Prosobranchia). Malacological Review. 22, 39-53.
    Gutierrez, J.L.; Jones, C.G.; Strayer, D.L.; Iribarne, O.O., 2003. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos. 101, 79-90.
    Hall Jr, R.O.; Tank, J.L.; Dybdahl, M.F., 2003. Exotic snails dominate nitrogen and carbon cycling in a highly productive stream. Front Ecol Environ. 1 (8), 407-411.
    Haynes, A., 1988. Apopulation study of the Fijian freshwater thiarid gastropod Fijidoma maculata (Mousson). Arch. Hydrobiol. 113 (1), 27-39.
    Howland, R.J.M.; Tappin, A.D.; Uncles, R.J.; Plummer, D.H.; Bloomer, N.J., 2000. Distributions and seasonal variability of pH and alkalinity in the Tweed estuary, UK. The Science of the Total Environment. 251/252, 125-138.
    Hu, C.H.; Tao, H.J., 1995. Shells of Taiwan illustrated in color. National museum of national science, Taiwan.
    Huang, S.; Shih, J.T.; Hsueh, M.L., 1998. Mangroves of Taiwan. Taiwan Endemic Species Research institute press. Taiwan.
    Jarne, P.; Stadler, T., 1995. Population genetic structure and mating system evolution in freshwater pulmonates. Experientia. 51, 482-497.
    Lai, S.D.; Chen, P.C.; Hsu, H.K., 2003. Benthic algae as monitors of heavy metals in various polluted rivers by energy dispersive x-ray spectrometer. Journal of environmental science and health. 38 (5), 855-866. (A)
    Lai, S.D.; Wang, J.P.; Yeh, J.T.; Tsay, H.W., 2003. Ecology of Cyclotella spp. from Chia-Nan stream (Taiwan). Diatom. 19, 23-31. (B)
    Liang, S.H.; Shieh, B.S.; Fu, Y.S., 2002. A structural equation model for physiochemical variables of water, benthic invertebrates, and feeding activity of waterbirds in the Sitsao wetland of southern Taiwan. Zoological Studies. 41 (4), 441-451.
    Lobban, C.S.; Schefter, M., 1997. M. Tropical Pacific island environments. University of Guam press. Mangilao, Guam, USA.
    Madsen, H.; Frandsen, F., 1989. The spread of freshwater snails including those of medical and veterinary importance. Acta Tropica. 46, 139-146
    Maranhao, P.; Bengala, N.; Paradal, M.; Marques, J.C., 2001. The influence of environmental factors on the population dunamics, reproductive biology and productivity of Echinogammarus marinus Leach (Amphipoda, Gammaridae) in the Mondego estuary (Portugal). Acta Oecologica. 22, 139-152.
    Maranhao, P.; Marques, J.C., 2003. The influence of temperature and salinity on the duration of embryonic development, fecundity and growth of the amphipod Echinogemmarus marinus Leach (Gammaridae). Acta Oecologica. 24, 5-13.
    Marques, J.C.; Martins, I.; Ferreira, C.T.; Cruz, S., 1994. Population dynamics, life history, and production of Cyathura carinata (Kroyer) (Isopoda: Anthuridae) in the Mondego estuary, Portugal. Journal of crustacean biology. 14 (2), 258-272.
    Mckenney JR, C.L., 1996. The combinated effects of salinity and temperature on various aspects of the reproductive biology of the estuarine mysid, Mysidoosis bahia. Invert. Reprod. Develop. 29 (1), 9-18.
    Meyer, J.S.; Ingersoll, C.G.; Mcdonald, L.L.; Boyce, M.S., 1986. Estimating uncertainty in population growth rates: Jacknife vs. Bootstrap techniques. Ecology. 67 (5), 1156-1166.
    Millero, F.J., 1996. Chemical Oceanography, 2nd ed. CRC press. Florida.
    Myers, M.J.; Meyer, C.P.; Resh, V.H., 2000. Neritid and thiarid gastropods from French Polynesian streams: how reproduction (sexual, parthenogenetic) and dispersal (active, passive) affect population structure. Freshwater Biology. 44, 535-545.
    Neal, C.; House, W.A.; Leeks, G.J.L.; Whitton, B.A.; Williams, R.J., 2000. Conclusions to the special issue of Science of the Total Environment concerning ‘The water quality of UK rivers entering the North Sea’. The Science of the Total Environment. 251/252, 557-573.
    Pace, G.L., 1973. The freshwater snails of Taiwan (Formosa). Malacological Review. 1, 51-67.
    Pointier, J.P.; Samadi, S.; Jarne, p.; Delay, B., 1998. Introduction and spread of Thiara granifera (Lamark, 1822) in Martinique, French West Indies. Biodiversity and Conservation. 7, 1277-1290.
    Sandin, L., 2003. Benthic macroinvertebrates in Swedish streams: community structure, taxon richness, and environmental relations. Ecography. 26, 269-282.
    Schreiber, E.S.G.; Quinn, G.P.; Lake, P.S., 2003. Distribution of an alien aquatic snail in relation to flow variability, human activities and water quality. 48, 951-961.
    Stearns, S.C., 1976. The quarterly review of biology. Life-history tactics. 51 (1), 3-47.
    Wade, J.W.; Stirling, H.P., 1999. Fertilization of earth ponds. ΙΙΙ: effects on benthic macro invertebrates and ecological inter-relationship with aquatic macrophytes. Journal of Aquatic Sciences. 14, 19-27.
    Zied, E.M.A.; Gabre, R.M.; Chi, H., 2003. Life table of the Australian sheep blow fly Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae). Egypt. J. Zool. 41, 29-45.

    下載圖示 校內:2005-07-30公開
    校外:2006-07-30公開
    QR CODE