簡易檢索 / 詳目顯示

研究生: 薛乃瑞
Hsueh, Nai-Jui
論文名稱: 以熱壓燒結法製備TiC/Ti3SiC2之微結構及機械性質之研究
Investigation of microstructure and mechanical properties of Titanium Carbide / Titanium Silicon Carbide prepared by hot-pressing
指導教授: 黃肇瑞
Huang, Jow-Lay
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 82
中文關鍵詞: TiC熱壓燒結Ti3SiC2
外文關鍵詞: TiC, Ti3SiC2, hot-pressed
相關次數: 點閱:51下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以Ti/Si/C作為起始粉末於1atm氬氣及25MPa之機械壓力下進行熱壓燒結,藉由改變起始粉末中之Si含量與燒結溫度,探討此因素對於TiC/Ti3SiC2複合材料之相組成、微結構與機械性質的影響。實驗結果顯示,隨著起始粉末中之Si含量減少,反應生成之第二相TiC含量會增加,且當溫度超過1550℃後,會隨著溫度的增加造成Ti3SiC2分解,產生TiC。為了比較第二相含量對於機械性質之影響,本研究固定1850℃持溫30分鐘之熱壓燒結參數,並控制起始粉末之Si含量,以3Ti/1,0.9,0.8,0.7Si/2C的莫耳比作為起始粉末,可得一系列不同含量且緻密化的TiC/Ti3SiC2複合材料。

    將此一系列不同第二相含量的複合材料進行機械性質之分析,結果顯示隨著第二相含量的增加,材料的強度會上升,當第二相TiC之含量為14.5vol%時,具有最高之四點抗彎強度,其值為425MPa,與純相Ti3SiC2材料相比,強化了約42%。強化的原因為晶粒細化與破壞模式的改變,將裂縫導向穿晶破壞為主。但當第二相含量超過14.5vol.%後,強度會隨著第二相含量的增加而下降,造成此現象的主因為熱應力造成殘留孔洞,使得強度值下降。

    利用SENB法量測之韌性值方面,在TiC含量增加的初期並不會差異太大,且最高可達7.2±0.4MPa‧m1/2,由SEM斷面之觀察可發現此複合材料仍有本質之Ti3SiC2韌化行為,如微裂縫、脫層、層板破壞、晶粒扭曲與糾結帶產生等。且第二相幫助韌化之行為亦可發現,如裂縫轉折、裂縫分支、晶粒架橋與晶粒拔出等,因而擁有比純相Ti3SiC2更好的韌性行為。當第二相含量繼續增加而超過14.5vol%後,會因破壞模式改變,導致韌性值下降。

    硬度值則隨第二相的含量增加而增加,最高可達6GPa,與純相Ti3SiC2相比,提升約50%。

    In this investigation, Ti / Si / C powders are used as starting materials and hot pressed under mechanical pressure of 25MPa. By controlling the starting molar ratio of Si and sintering temperature to investigate how these factors influence the phase, microstructure, and mechanical properties of this TiC/Ti3SiC2 composites system. Results show that with the starting molar ratio of Si decreasing, the formation of TiC will increase. In addition, when sintering temperature above 1550℃, Ti3SiC2 will decompose into TiC and Si causing the content of TiC increase with the temperature increasing. In order to investigate how the second phase influence mechanical properties, the starting molar ratio of Si is controlled and use 3Ti/1,0.9,0.8,0.7Si/2C as starting materials to hot pressed at 1850℃ for 30minutes under mechanical pressure of 25MPa.

    Experimental results show that 4-p bending strength will increase with the content of second phase increasing, and the value of strength is 425Mpa when the composites content 14.5vol% TiC. Compare with monolithic Ti3SiC2, the strength improved 42%. The reason of better strength is contributed to grain size reduction and transgranular fracture. However, the reduction of strength will be observed when the content of TiC over 14.5vol%. The reason is the appearance of pores causing by the difference of thermal expansion coefficient.

    The value of fracture toughness is similar in the beginning of TiC content rising, and the value reaches 7.2±0.4MPa×m1/2. By SEM observation of fracture surface, the Ti3SiC2 intrinsic toughening mechanism such as microcrack, laminate fracture, buckling and delamination within grains, kink band formation was observed. In addition, second phase toughening mechanism such as crack deflection, crack branching, crack bridging and grain pull out are another reasons causing the fracture toughness value better than monolithic Ti3SiC2. Unfortunately, the value of fracture toughness will decrease when the content of TiC over 14.5vol% because of the behavior of fracture changing.

    The value of hardness increase with TiC content increasing, and reach to 6GPa, 2 times better than monolithic Ti3SiC2.

    中文摘要 I 英文摘要 III 誌謝 V 總目錄 VII 圖目錄 IX 表目錄 XII 第一章 緒論 1 1-1 前言 1 1-2 實驗目的及重點 2 第二章 理論基礎與文獻回顧 4 2-1 Ti3SiC2簡介 4 2-2 TiC簡介 8 2-3 液相燒結 11 2-4 陶瓷基複合材料 13 2-4-1 陶瓷基複合材料強化機制 14 2-4-2 陶瓷基複合材料韌化機制 15 2-5 陶瓷材料之熱應力產生的理論模式 19 第三章 實驗方法與步驟 22 3-1 燒結體的合成及微結構分析與觀察 22 3-1-1 原料粉末的規格 22 3-1-2 試片製備 22 3-1-3 晶相分析 25 3-1-4 純度的計算 25 3-1-5 SEM的觀察 29 3-2 燒結體性質的測定 29 3-2-1 密度的量測 29 3-2-2 硬度 30 3-2-3 楊氏係數 30 3-2-4 彎曲強度 31 3-2-5 破壞韌性 32 第四章 結果與討論 34 4-1 TiC/Ti3SiC2陶瓷複合材料之合成 34 4-1-1 Si含量對於形成TiC與Ti3SiC2相之影響 34 4-1-2 溫度對於形成TiC與Ti3SiC2相之影響 37 4-1-3 TiC/ Ti3SiC2陶瓷複合材料之反應機制 41 4-2 TiC/ Ti3SiC2陶瓷複合材料的密度及微結構 47 4-2-1 燒結體密度與孔隙率 47 4-2-2 表面微結構觀察 51 4-3 TiC/Ti3SiC2陶瓷複合材料之機械性質探討 55 4-3-1 第二相含量對於四點抗彎強度之影響 55 4-3-2 第二相含量對於維氏硬度之影響 58 4-3-3 第二相含量對於破壞韌性之影響與韌化機制 62 4-3-4 第二相含量對於楊氏係數之關係 72 4-3-5 H/E之比值 75 第五章 結論 76 參考文獻 77 作者簡歷 82

    1. M. W. Barsoum and T. El-Raghy, “Synthesis and Characterization of a Remarkable Ceramic:Ti3SiC2,” J. Am. Ceram. Soc., 79[7], 1953-1956 (1996)
    2. T. El-Raghy, A. Zavaliangos, M. W. Barsoum and S. R. Kalidindi, “Damage Mechanism around Hardness Indentation in Ti3SiC2,” J. Am. Ceram. Soc., 80[2], 513-516 (1997)
    3. M. W. Barsoum and T. El-Raghy, “Oxidation Of Ti3SiC2 in Air,” J. Electrochem. Soc., 144[7], 2508-2516 (1997)
    4. T. El-Raghy, M. W. Barsoum, A. Zavaliangos and S. R. Kalidindi, “Processing and Mechanical Properties of Ti3SiC2:Ⅱ, Effect of Grain Size and Deformation Temperature,” J. Am. Ceram. Soc., 82[10], 2855-2860 (1999)
    5. J. Lis, Y. Miyamoto, R. Pampuch and K. Tanihata, “Ti3SiC2-based materials prepared by HIP-SHS techniques,” Materials Letters, 22, 163-168 (1995)
    6. F. Goesmann and R. Schmid-Fetzer, “Metals on 6H-SiC : contact formation from the materials science point of view,” Mate. Sci. & Eng. B, 46, 357-362 (1997)
    7. Yi Zhang, Z. Sun and Y. Zhou, “Cu/ Ti3SiC2 composite : a new electrofriction materials,” Mat. Res. Innovat., 3, 80-84 (1999)
    8. L. Jaworska and M. Szutkowska, “Ti3SiC2 as a bonding phase in diamond composites,” J. Mate. Sci. Letters, 20, 1783-1786 (2001)
    9. W. Jeischko and H. Nowotny, “Die Kristallstuctur von Ti3SiC2-Ein Neuer Komplexcarbid- Typ,” Monatsch Chem., 98, 329-337 (1967)
    10. T. Goto and T. Hirai, “Chemically Vapor Deposited Ti3SiC2,” Mat. Res. Bull., 22, 1195-1201 (1987)
    11. S. Arunajatesan and A. H. Carim, “Synthesis of Titanium Silicon Carbide,” J. Am. Ceram. Soc., 78[3], 667-672 (1995)
    12. Y. Zhou and Z. Sun, “Temperature fluctuation/hot pressing synthesis of Ti3SiC2,” J. Mate. Sci., 35, 4343-4346 (2000)
    13. Jing Feng Li, Fumiaki Sato and Ryuzo Watanabe, “Synthesis of Ti3SiC2 polycrystal by hot-isostatic pressing of the element powders,” J. Mate. Sci. Lette., 18, 1595-1597 (1999)
    14. Y. Khoptiar and I. Gotman, “Synthesis of dense Ti3SiC2-based ceramics by thermal explosion under pressure,” J. Eur. Ceram. Soc., 23, 47-53 (2003)
    15. F. Goesmann, R. Wenzel and R. Schmid-Fetzer, “Preparation of Ti3SiC2 by Electron-Beam-Ignited Solid-State Reaction,” J. Am. Ceram. Soc., 81[11], 3025-3028 (1998)
    16. Shi, Sui Lin and Pan, Wei “Toughening of Ti3SiC2 with 3Y-TZP addition by spark plasma sintering,” Mate. Sci. & Eng. B, 447, 303-306 (2007)
    17. Chunfeng Hu, Yanchun Zhou, Yiwang Bao and Detian Wan, “Tribological Properties of Polycrystalline Ti3SiC2 and Al2O3-Reinforced Ti3SiC2 Composites,” J. Am. Ceram. Soc., 89[11], 3456-3461 (2006)
    18. Linh H. Ho-Duc, Tamer El-Raghy, M.W.Barsoum, “Synthesis and characterization of 0.3 Vf TiC-Ti3SiC2 and 0.3 Vf SiC-Ti3SiC2 composites,” J. Alloys Comp., 350, 303-312 (2003)
    19. 黃啟祥、林江財,陶瓷技術手冊(下),經濟部技術處(1994)
    20. 倪沅錩,熱壓燒結碳化鈦矽之微結構及機械性質之研究,國立成功大學材料科學及工程學系碩士論文(2004)
    21.M.W.Barsoum,“The MN+1AXN Phases : A New Class of Solids ;Thermodynamically Stable Nanolaminates,” Prog. Solid St. Chem., 28, 201-281 (2000)
    22.L .Farber, I. Levin, M. W. Barsoum, T. El-Raghy and T. Tzenov, “High-resolution transmission electron microscopy of some Tin+1AXn compounds ( n=1,2; A=Al or Si; X=C or N ) ,”J. App. Phy., 86[5], 2540-2543 (1999)
    23.E.K.Storms, “The Refractory Carbide,”Academic Press, New York and London, (1967)
    24. 稻川幸之助, “炭化窒化,”事典,技報堂出版,631~44
    25. M.W.Barsoum, “Fundamental of Ceramics,” the McGraw-Hill companies,Inc.(1997)
    26. N.J.Petch, “Cleavage Strength of Polycrystals,” J. Iron and Steel Inst.(London),174[1],p.25(1953)
    27. C.Zener, “Grains, Phase, and Interface : An Interpretation of Microstructure,” Trans.Am.Inst.Min.Metall.Eng.,175,p.15(1948)
    28. Martin Sternitzke, “Review : Structural Ceramic Nanocomposites,” J. Eur. Ceram. Soc., 17, p.1061 (1997)
    29. R.W.Rice, “Toughening in Ceramics Particulate and Whisker Composites,” Ceram.Eng.Sci.Proc,,11[7-8],p.667(1990)
    30. K.T. Faber and A.G. Evans, “Crack Deflection Process-I.Theory,” Acta Metall.,31[4],p.565(1983)
    31.G.C. Wei, P.F. Becher, “Improvement in mechanical Properties in SiC by Addition of TiC Particles,” J. Am. Ceram. Soc., 67[8], 571-74 (1984)
    32. R.W.Rice, “Toughening in Ceramics Matrix Composites,” Ceram.Eng.Sci.Proc,,2[7-8],661-701(1981)
    33. Jorgen Selsing, “Internal Stress in Ceramics,” J. Am. Ceram. Soc., 44[8], 419 (1961)
    34.Yong Du, Julius C. Schuster,“Experimental Investigation and Thermodynamic Calculation of Titanium-Silicon-Carbon System,” J. Am. Ceram. Soc., 83[1], 197-203 (2000)
    35. J. Lsi, R. Pampuch, T. Rudnik and Z. Wegrzyn, “Reaction sintering phenomena of self-propagating high-temperature synthesis-derived ceramic powders in the Ti-Si-C system,” Solid State Ionics, 101-103 (1999)
    36. Ke Tang, Chang-an Wang, Young Huang, Qingfeng Zan, Xingli Xu, “A Study on the reaction mechanism and growth of Ti3SiC2 synthesized by hot-pressing,” Mate. Sci. & Eng., A328, 206-212 (2002)
    37. T. El-Raghy, M.W. Barsoum, J.Appl. Phys.83,112-119(1998)
    38. C. Racault, F. Langlais and R. Naslain, “Solid-State synthesis and characterization of the ternary phase Ti3SiC2,” J. Mat. Sci., 29, 3384-3392 (1994)
    39. T. Okano, T. Yano and T. Iseki, “Synthesis and Mechanical Properties of Ti3SiC2 Ceramic,” Trans. Met. Soc. Jpn., 14A, 597 (1993)
    40.Tamer El-Raghy and Michel W. Barsoum, “Processing and Mechanical Properties of Ti3SiC2:I, Reaction Path and Microstructure Evolution,” J. Am. Ceram. Soc., 82[10], 2849-2854 (1999)
    41. Erdong Wu, Erich H. Kisi, and Daniel P. Riley, “Intermediate Phases in Ti3SiC2 Synthesis from Ti/SiC/C Mixtures Studied by Time-Resolved Neutron Diffraction,” J. Am. Ceram. Soc., 85[12], 3084-3086 (2002)
    42. Erdong Wu, Erich H. Kisi, “In Situ Neutron Powder Diffraction Study of Ti3SiC2 Synthesis,” J. Am. Ceram. Soc., 84[10], 2281-2288 (2001)
    43. Krakow and Poland, “The role of liquid phase in solid combustion synthesis of Ti3SiC2,” Int. J. Mate. and Prod. Tech., 10[3-6], 316-324 (1995)
    44. D. Brodkin, S. Kalidindi, M. W. Barsoum and A. Zavaliangos, “Microstructural Evolution during Transient Plastic Phase Processing of Titanium Carbide-Titanium Boride Composite,” J. Am. Ceram. Soc., 79[7], 1945-1952 (1996)
    45. Z.M. Sun “Effects of sintering temperature and Si content on the purity of Ti3SiC2 synthesized from Ti,Si,TiC powders,” J. Alloys Comp., 352, 283-289 (2003)
    46.W.J.J.Wakelkamp, F.Van Loo, and R.Metselaar,“Phase Relation in the Titanium-Silicon-Carbon system,” J. Eur. Ceram. Soc., 8, p.135 (1991)
    47.Songlang Yang, Z.M. Sun, Hitoshi Hashimoto,“Reaction in Ti3SiC2 synthesized from a Ti-Si-TiC powder mixture,” J. Alloys Comp., 368, 312-317 (2004)
    48. T. Fang, “Abnormal Grain Growth in Sintering Powder Compacts,” Scr. Metall., 22, 9-11 (1988)
    49. J. Rdel and A. Glaeser, “Anisotropy of Grain-Growth in Alumina,” J. Am. Ceram. Soc., 72 [11], 3292-3301 (1990)
    50. S. Bennison and M. Harmer, “Grain-Growth Kinetics for Alumina in the absence of a Liquid Phase,” J. Am. Ceram. Soc., 68 [1], C-22-C-24 (1985)
    51. M.W.Barsoum, L Faber, and El-Raghy, “Dislocation, Kink bands, and Room Temperature Plasticity of Ti3SiC2,” Metallurgical and Materials Transaction A, 30, 1738 (1999)
    52. K. Tang, C. Wang, Y. Huang, L. Wu, Matter. Lett. 57, 106–109 (2002)
    53. M. Radovic, M. W. Barsoum, T. El-Raghy and S. Wiederhorn, “Tensile Creep of fine grained (3~5μm) Ti3SiC2 in the 1000-1200℃ temperature range,” Acta Materiala, 49, 4103-4112 (2001)

    下載圖示 校內:2009-07-20公開
    校外:2009-07-20公開
    QR CODE