簡易檢索 / 詳目顯示

研究生: 王顥宇
Wang, Hao-Yu
論文名稱: 高塔式防火爐流場之數值模擬
Numerical Simulations of Flow Field in Towered-Type Fire Safety Furnace
指導教授: 林三益
Lin, San-Yih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 102
中文關鍵詞: 高塔式防火爐升溫曲線燃燒模型非預混燃燒
外文關鍵詞: Towered-type Furnace, Temperature Curve, Combustion model, Non-premixed Combustion
相關次數: 點閱:95下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文使用計算軟體,進行防火安全用防火爐流場及溫度場分析。其目的在探討相同比例的防火爐模型,內部的燃燒台經過點火燃燒之後,爐內溫度偵測點所偵測到的升溫曲線及速度偵測點所偵測到的速度隨時間變化,是否符合規範中所規定的範圍,並觀察爐內流場及溫度場的變化,其排熱效果是否優良。本研究採用計算軟體FLUENT之PISO數值方法進行模擬計算。
      在程式驗證中,在高塔式防火爐架構下,主要進行二維非預混燃燒流場驗證、三維空穴流場及三維自然對流流場驗證,以確保其準確性。
      實際物理模型為測試UL790之高塔式防火爐,屋頂設有一排氣裝置,並在空氣入口注入高速常溫空氣,瓦斯進口注入常溫的瓦斯(丙浣、少量丁浣),經過點火之後,觀察其內部溫度流場,及火燄蔓延趨勢,且觀察是否符合規範中所規定的溫度範圍。本研究所建置之高塔式防火安全用防火爐,為典型非預混燃燒模型。模擬結果顯示,其火焰溫度可達規範中所制定的範圍,模擬燃燒時間為10分鐘。

    In this paper, the numerical simulations were performed for the flow and temperature analysis of furnace for fire safety. The research objective is to use proportional furnace model to discuss the temperature curve and speed, which were detected by the temperature and speed detectors in the furnace, accord with the stipulated range after internal combustion through burning ignition. In addition, the heat effect of furnace can be observed by the changes of internal flow field and temperature field in the furnace. This study used the PISO solution equation in the CFD (Computational Fluid Dynamics) program FLUENT to simulate the problems.
    Three test cases, two-dimensional non-premixed combustion model, three-dimensional cavity flow and three-dimensional natural convection problem, are simulated to see the accuracy of the numerical method.
    The real physical model is a towered-type fire safety furnace for UL790 test. The roof has an exhaust device, as well as high speed air which is at the room temperature and gas which is mixed by propane and a little butane inject into the air entry and gas entry, respectively. The internal temperature flow field and the tendency of the flame were observed after burning ignition. The numerical show that the design of results can satisfy the specification temperature range in the furnace. In this paper, the towered-type fire safety furnace is standard non-premixed combustion model. The flame temperature can reach the assigned range. The time period of simulation is 10 minutes.

    目錄 中文摘要 .............................I Abstract .............................II 誌謝 ...............................IV 符號說明..............................V 第一章 緒論............................1 1-1 前言.............................1 1-2 動機與目的..........................2 1-3 內容大綱...........................3 第二章 數值方法..........................6 2-1 統御方程式..........................6 2-2 PISO演算法(Pressure-Implicit with Splitting of Operators).11 第三章 程式驗證..........................14 3-1 三維空穴流(Three-Dimensional Cavity Flow) ............14 3-2 三維自然對流(Three-Dimensional Natural Convection) ........16 3-3 二維非預混氫氧燃燒 (Two-Dimensional Non-Premixed Hydrogen Combustion) ................ 17 第四章 數值模擬結果分析......................20 4-1 高塔式防火爐外觀及內部簡介..................20 4-2 高塔式防火爐格點系統.....................20 4-3 溫度熱電偶與流場速度偵測點設置................21 4-4 邊界條件設定.........................21 4-5 結果與討論..........................23 4-6 改良.............................28 第五章 結論與建議.........................30 5-1 結論.............................30 5-2 建議.............................31 參考文獻.............................33 圖目錄 圖1-1 燃燒試驗爐設計圖......................36 圖1-2 燃燒試驗台設計圖......................36 圖3-1 雷諾數100 (21x21x21) ....................37 圖3-2 雷諾數400 (25x25x25) ....................38 圖3-3 雷諾數1000 (31x31x31) ....................39 圖3-4雷諾數100各平面之壓力圖...................40 圖3-5 各雷諾數X-Y平面之向量圖...................41 圖3-6 雷利數105.........................42 圖3-7 雷利數106.........................43 圖3-8 雷利數為105,各平面U方向速度和V方向速度..........44 圖3-9 雷利數106,各平面U方向速度和V方向速度...........45 圖3-10 雷利數105,等溫面圖及等渦度面圖...............46 圖3-11 二維非預混氫氧燃燒示意圖..................47 圖3-12 氫氧分子生成等質量分率圖..................48 圖3-13 不同高度水平直線上的溫度分布圖...............49 圖3-14 不同高度水平直線上水(H2O)生成質量分率分布圖........49 圖3-15 不同高度水平直線上25倍氫氧離子(OH)生成質量分率分布圖...50 圖4-1 高塔式防火爐外觀......................51 圖4-2 燃燒試驗台外觀.......................51 圖4-3 瓦斯進口示意圖.......................52 圖4-4 高塔式防火爐格點設置....................52 圖4-5 瓦斯出口區域格點設置放大圖.................53 圖4-6 60秒內風速偵測點上所偵測到的速度..............53 圖4-7 t=60秒等壓圖........................54 圖4-8 t=60秒速率圖........................54 圖4-9 t=60秒流線圖........................55 圖4-10 t=60秒等溫圖........................55 圖4-11 t=60秒等密度圖.......................56 圖4-12 t=60秒水生成質量分率圖...................56 圖4-13 t=60秒二氧化碳與一氧化碳生成質量分率圖...........57 圖4-14 t=120秒等壓圖.......................57 圖4-15 t=180秒等壓圖.......................58 圖4-16 t=120秒等溫圖.......................58 圖4.17 t=130秒等溫圖.......................59 圖4-18 t=120秒等速率圖......................59 圖4-19 t=120秒流線圖.......................60 圖4-20 t=180秒等速率圖......................60 圖4-21 t=180秒流線圖.......................61 圖4-22 t=120秒等密度圖......................61 圖4-23 t=180秒等密度圖............. .........62 圖4-24 t=120秒水生成質量分率圖..................62 圖4-25 t=120秒生成二氧化碳質量分率圖...............63 圖4-26 t=180秒水生成質量分率圖..................63 圖4-27 t=180秒二氧化碳生成質量分率圖...............64 圖4-28 t=240秒等壓圖.......................64 圖4-29 t=300秒等壓圖.......................65 圖4-30 t=240秒等溫圖.......................65 圖4-31 t=300秒等溫圖.......................66 圖4-32 t=240秒等密度圖......................66 圖4-33 t=300秒等密度圖......................67 圖4-34 t=240秒等速率圖......................67 圖4-35 t=300秒等速率圖......................68 圖4-36 t=240秒流線圖.......................68 圖4-37 t=300秒流線圖.......................69 圖4-38 t=240秒水生成質量分率圖..................69 圖4-39 t=240秒生成二氧化碳質量分率圖...............70 圖4-40 t=300秒水生成質量分率圖..................70 圖4-41 t=300秒二氧化碳生成分率圖.................71 圖4-42 t=360秒等壓圖.......................71 圖4-43 t=420秒等壓圖.......................72 圖4-44 t=360秒等溫圖.......................72 圖4-45 t=420秒等溫圖.......................73 圖4-46 t=360秒等密度圖......................73 圖4-47 t=420秒等密度圖......................74 圖4-48 t=360秒等速率圖......................74 圖4-49 t=420秒等速率圖......................75 圖4-50 t=360秒流線圖.......................75 圖4-51 t=420秒流線圖.......................76 圖4-52 t=360秒水生成質量分率圖..................76 圖4-53 t=360秒二氧化碳生成質量分率圖...............77 圖4-54 t=420秒水生成質量分率圖..................77 圖4-55 t=420秒二氧化碳生成質量分率圖...............78 圖4-56 t=480秒等壓圖.......................78 圖4-57 t=540秒等壓圖.......................79 圖4-58 t=480秒等溫圖.......................79 圖4-59 t=540秒等溫圖.......................80 圖4-60 t=480秒等密度圖......................80 圖4-61 t=540秒等密度圖......................81 圖4-62 t=480秒等速率圖......................81 圖4-63 t=540秒等速率圖......................82 圖4-64 t=480秒流線圖.......................82 圖4-65 t=540秒流線圖.......................83 圖4-66 t=480秒水生成質量分率圖..................83 圖4-67 t=480秒二氧化碳生成質量分率圖...............84 圖4-68 t=540秒水生成質量分率圖..................84 圖4-69 t=540秒二氧化碳生成質量分率圖...............85 圖4-70 t=600秒平面Z=0等壓圖....................85 圖4-71 t=600秒平面Z=0等溫圖....................86 圖4-72 t=600秒平面X=7.1283等溫圖.................86 圖4-73 t=600秒平面X=9.5等溫圖..................87 圖4-74 t=600秒平面Z=0等速率圖..................87 圖4-75 t=600秒平面Z=0流線圖...................88 圖4-76 t=600秒平面Z=0等密度圖..................88 圖4-77 t=600秒平面Z=0水及二氧化碳生成分率圖...........89 圖4-78 600秒內溫度偵測點所偵測到之升溫曲線............89 圖4-79 出口下方X=9.5直線上溫度分布曲線..............90 圖4-80 出口下方X=9.5直線上速度分布曲線..............90 圖4-81 改良後t=300秒等壓圖....................91 圖4-82 改良後t=300秒等密度圖...................91 圖4-83 改良後t=300秒等溫圖....................92 圖4-84 改良後t=300秒等速率圖...................92 圖4-85 改良後t=300秒流線圖....................93 圖4-86 改良後t=300秒水生成質量分率圖...............93 圖4-87 改良後t=300秒二氧化碳生成質量分率圖............94 圖4-88 改良後t=600秒等壓圖....................94 圖4-89 改良後t=600秒等密度圖...................95 圖4-90 改良後t=600秒等溫圖....................95 圖4-91 出口下方X=9.5垂直直線上溫度分部曲線............96 圖4-92 出口下方X=9.5的Y-Z平面之等溫圖..............96 圖4-93 改良後t=600秒等速率圖...................97 圖4-94 改良後t=600秒流線圖.............97 圖4-95 改良後t=600秒水生成質量分率圖..........98 圖4-96 改良後t=600秒二氧化碳生成質量分率圖.......98 圖4-97 改良後600秒內溫度偵測點所偵測到之升溫曲線....99 圖4-98 改良後600秒內速度偵測點所偵測到速度隨時間變化圖....99 圖5-1 600秒內速度偵測點所偵測到速度隨時間變化圖......100 表4-1 溫度及速度偵測點座標....................101 自述....................102

    【1】陳彥章,“防火安全用防火爐流場之數值模擬”國立成功大學航空 太空工程所碩士論文,2008年6月
    【2】杜博文,“循環式防火爐流場之數值模擬”國立成功大學航空太空工程所碩士論文,2009年6月
    【3】FLUENT User’s Guide Ver.6.3.26, FLUENT Inc
    【4】GAMBIT Command Reference Guide Ver.2.3, FLUENT Inc
    【5】S.V. Patanker and D.B. Dpalding,“ A calculation procedure for heat, mass and momentum transfer in three-dimentional parabolic flows,” Int. J. Heat Mass Transfer, Vol. 15, pp1787-1806, 1972
    【6】J.P. Van Doormaal and G.D. Raithby,“Enhancement of the SIMPLE methods for predicting incompressible fluid flows,”Num. Heat Transfer Vol. 7, pp.147-163, 1984
    【7】R.I. ISSA,“Solution of The Implicitly Discretised Fluid Flow Equations by Operator-Splitting,”Journal of Computational Physics Vol. 62, pp.40-65,1985
    【8】R.I. ISSA,“The Computation of Compressible and Incompressible Recirculating Flows by A Non-Iterative Implicit Scheme,”Journal of Computation Physics Vol. 62, pp.66-82,1986
    【9】B.E. Launder, D.B. Spalding, and Lectures in Mathematical Models of Turbulence. Academic Press, London, 1972
    【10】C. Shu, L Wang, Y.T. Chew,“Numerical Computation of Three-Dimensional Incompressible Navier-Stokes Equations in Primitive Variable Form by DQ Method,”Int. J. Numer. Meth. Fluids, Vol.43, pp.345-368, 2003
    【11】T. Fusegi, J.M. Hyun, K. Kuwahara, and B. Farouk,“A Numerical Study of Three-Dimentional Natural Convection in A Differentially Heated Cubical Enclosure,”Int. J. Heat and Mass Transfer Vol.34, No.76, pp.1543-1557, 1990
    【12】T.S. Cheng, C.-Y. Wu, C.-P. Chen, Y.-H. Li, Y.-C. Chao, T, Yuan, T.S. Leu,“Detail measurement and assessment of laminar hydrogen jet diffusion flames,”Combustion and Flame, Volume 146, Issue 1-2, pp.268-282, 2006
    【13】C. Zhang, T. Ishii, S.Sugiyama,“The Numerical and Experimental Study of Non-Premixed Combustion Flames in Regenerative Furnaces,”Journal of Heat Transfer Vol.122, pp.287-293, 2000
    【14】吳村木,“以有限體積法探討流經圓柱渦漩曳放的壓抑現象”國立成功大學航空太空工程所博士論文,1993年6月
    【15】詹惟淳“密閉矩形室流場及熱傳數值模擬分析”國立成功大學航空太空工程所碩士論文,2007年7月
    【16】S. Mittal,“Computation of three-dimentional flows past circular cylinder of low aspect ratio”PHYSICS OF FLUIDS, Vol. 13 No. 1, pp.171-191
    【17】W. Qu and I. Mudawar, “Analysis of Three-Dimensional Heat Tramsfer in Micro-Chaneel Heat Sinks,”Int. Journal. Heat and Mass Transfer, Vol.45, No.19, pp.3973-3985
    【18】Anil Kumar Sharma, K. Velusamy, C. Balaji,“Turbulent natural convection in an enclosure with localized heating from below,”International Journal of Thermal Science 46, pp.1232-1241,2007
    【19】F. Tabet, B. Sarh, and I. Gökalp,” Hydrogen-hydrocarcon turbulent non-premixed flame structure ,” International Journal of Hydrogen Energy, Volume 34, Issue 11, pp.5040-5047, June 2009

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE