簡易檢索 / 詳目顯示

研究生: 陳永崧
Chen, Yong-Song
論文名稱: 極音速環境下熱輻射對熱防護材料熱負荷影響之數值模擬分析
Numerical Simulation of Thermal Radiation Influence on Thermal Load of Thermal Protection Material in Hypersonic Flow
指導教授: 江滄柳
Jiang, Tsung-Leo
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 90
中文關鍵詞: 極音速流輻射效應熱傳分析鬆散耦合
外文關鍵詞: Hypersonic Flow, Radiation Effect, Heat Transfer Analysis, Loosely Coupled Analysis Strategy
相關次數: 點閱:109下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來極音速載具之發展受到各國的重視,然而極音速飛行會為載具周遭帶來嚴峻的環境,且其產生之強烈氣動力加熱會使載具的可靠度受到挑戰,故本研究透過數值模擬的方式,建立一個模擬極音速流場的模型,用以了解極音速載具之熱負荷,並分析熱輻射對極音速載具造成的影響,以求對未來極音速載具之設計提供一個參考。
    在流場模型的建立中,未考慮輻射效應的模擬預測之熱負荷與飛行數據相符合,接著於模型中加入熱輻射機制並比較及挑選較為合適之輻射參數模型,而在加入熱輻射機制後預測之熱負荷亦符合飛行數據,至此驗證了所建立之模型對熱負荷預測的可靠性。由模擬結果的分析中可得到在本研究使用幾何外型參數及馬赫數7.5至馬赫數15的飛行條件下,輻射熱通量在熱負荷中的占比皆未超過百分之十,然而在經過600秒的熱防護材料升溫過程後,有考慮輻射效應的熱防護材料最高溫度會較無考慮的下降約百分之十八。

    The development of Hypersonic Vehicles has drawn significant attention from countries worldwide. However, due to the extreme aerodynamic heating that hypersonic flight subjects the vehicles to, it creates severe environmental and dependability issues. Therefore, this study establishes a numerical model for simulating hypersonic flow field. The aim is to understand the thermal loads on hypersonic vehicles and analyze the effects of thermal radiation, to provide insights for future hypersonic vehicle design.
    In the establishment of the flow field model, the simulated thermal loads without considering radiation effects match the flight data. Subsequently, the model incorporates thermal radiation mechanisms and compares various radiation parameter models to select the most appropriate one. With the inclusion of thermal radiation mechanisms, the predicted thermal loads also align with the flight data. This verifies the reliability of the established model in predicting thermal loads.
    According to the results of the simulation, the radiative heat flux did not exceed ten percent in the overall thermal loads when the Mach numbers were ranged between 7.5 to 15 under fixed geometry parameter. However, following a 600-second heating process of the thermal protection material, the maximum temperature of the material that considers radiation effects decreases by approximately eighteen percent compared to the non-considered scenario.

    摘要 I 誌謝 XII 目錄 XIII 表目錄 XVI 圖目錄 XVII 符號索引 XXI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 5 1.3 研究動機與目的 17 第二章 數學與物理模型及數值方法 19 2.1 基本假設 19 2.2 連續相之統御方程式 20 2.3 固體域能量方程式(Energy Equation in Solid Zone) 24 2.4 共軛熱傳模型 25 2.5 輻射模型 26 2.6 紊流模型 27 2.7 低雷諾數修正(Low-Reynolds-Number Correction) 30 2.8 化學模型 30 2.9 數值方法 33 第三章 模型建立 35 3.1 幾何模型參數 35 3.2 邊界條件 38 3.3 流場化學反應機制與熱物理性質 41 3.4 流場輻射機制 45 3.5 固體材料熱物理性質及輻射機制 46 3.6 鬆散耦合分析策略 50 3.7 流-固共軛界面 52 第四章 結果與討論 54 4.1 流場模擬之網格獨立測試及驗證 54 4.2 熱輻射參數模型之挑選與驗證 62 4.3 不同馬赫數對熱負荷之影響 69 4.4 流-固鬆散耦合之模擬與分析 74 第五章 結論與未來工作 80 5.1 結論 80 5.2 未來工作 82 參考文獻 84

    【1】J. D. Anderson Jr., Hypersonic and High-Temperature Gas Dynamics, Second Edition, American Institute of Aeronautics and Astronautics, Inc., Virginia,2006.
    【2】https://www.nasa.gov/centers/langley/news/factsheets/Supersonic.html
    【3】https://www.nasa.gov/centers/dryden/history/milestones/60.html
    【4】D. Wilkening, Hypersonic Weapons and Strategic Stability, Survival 61(5), 129-48, 2019.
    【5】J. Urzay, The Physical Characteristics of Hypersonic Flows, Center for Turbulence Research, Stanford University, Stanford CA, 2020.
    【6】S. Y. Chen, Modeling of Material-Environment Interactions for Hypersonic Thermal Protection Systems, Ph. D. Thesis, University of Michigan, 2020.
    【7】C. Park, S. Yoon, Calculation of Real-Gas Effects on Blunt-Body Trim Angles, AIAA Journal, Vol. 30, No. 4, 1992, pp. 999-1006.
    【8】L. E. Mackey, I. D. Boyd, Assessment of Hypersonic Flow Physics on Aero-Optics, AIAA Journal, Vol. 57, No. 9, 2019, pp. 3885-3897.
    【9】I. Sohn, A. Bansal, D. A. Levin, M. F. Modest, Advanced Radiation Calculations of Hypersonic Reentry Flows Using Efficient Databasing Schemes, Journal of Thermophysics and Heat Transfer, Vol. 24, No. 3, July-Sept. 2010, pp. 623-637.
    【10】 S. M. Scala, D. H. Sampson, Heat Transfer in Hypersonic Flow with Radiation and Chemical Reaction, Technical Report, General Electric Company, 1963.
    【11】 T. Ozawa, Improved Chemistry Model for DSMC Simulations of Ionized Rarefied Hypersonic Flows, Ph. D. Thesis, Department of Aerospace Engineering, Pennsylvania State University, University Park, PA, 2007.
    【12】 D. E. Glass, Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles, 15th AIAA Space Planes and Hypersonic Systems and Technologies Conference, AIAA-2008-2682, 2008.
    【13】 K. M. Hanquist, Modeling of Electron Transpiration Cooling for Leading Edges of Hypersonic Vehicles, Ph. D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2017.
    【14】 O. Uyanna, H. Najafi, Thermal Protection Systems for Space Vehicles: A Review on Technology Development, Current Challenges and Future Prospects, Acta Astronautica 176 (2020) 341-356.
    【15】 S. D. Kasen, Thermal Management at Hypersonic Leading Edges, Ph. D. Thesis, University of Virginia, 2013.
    【16】 B. A. Miller, Loosely Coupled Time Integration of Fluid-ThermalStructural Interactions in Hypersonic Flows, Ph. D. Thesis, Ohio State University, Columbus, OH, USA, 2015.
    【17】 S. Kamali, D. J. Mavriplis, E. Anderson, Development and Validation of a High-Fidelity Aero-Thermo-Elastic Analysis Capability, AIAA SciTech 2020 Forum, AIAA Paper 2020-1449, Orlando, FL, USA, 2020.
    【18】 D. E. Keyes, L. C. Mclnnes, C. Woodward, W. Gropp, E. Myra, M. Pernice, J. Bell, J. Brown, A. Clo, J. Connors, et al., Multiphysics Simulations: Challenges and Opportunities, The International Journal of High Performance Computing Applications, Vol. 27, No. 1, 2012, pp. 4- 83.
    【19】 D. Kontinos, Coupled Thermal Analysis Method with Application to Metallic Thermal Protection Panels, Journal of Thermophysics and Heat Transfer, Vol. 11, April-June 1997, pp. 173-181.
    【20】 R. Löhner, C. Yang, J. Cebral, J. D. Baum, H. Luo, Fluid-StructureThermal Interaction Using a Loose Coupling Algorithm and Adaptive Unstructured Grids, AIAA Paper 1998-2419, June 1998.
    【21】 C. Farhat, K. G. van der Zee, P. Geuzaine, Provably Second-Order Time-Accurate Loosely-Coupled Solution Algorithms for Transient Nonlinear Computational Aeroelasticity, Computer Methods in Applied Mechanics and Engineering, Vol. 195, Nos. 17-18, 2006, pp. 1973-2001.
    【22】 A. J. Culler, J. J. McNamara, Studies on Fluid-Thermal-Structural Coupling for Aerothermoelasticity in Hypersonic Flow, AIAA Journal, Vol. 78, No. 8, Aug. 2010, pp. 1721-1738.
    【23】 N. Lamorte, P. P. Friedmann, D. J. Dalle, S. M. Torrez, J. F. Driscoll, Uncertainty Propagation in Integrated Airframe-Propulsion System Analysis for Hypersonic Vehicles, Journal of Propulsion and Power, Vol. 31, No. 1, 2015, pp. 54-68.
    【24】 J. D. Reinert, A. Dwivedi, G. V. Candler, Verification of a Conjugate Heat Transfer Tool with US3D, AIAA Scitech 2019, AIAA Paper 2019- 1892, 2019.
    【25】 S. Bhattrai, A. J. Neely, G. M.D. Currao, L. P. McQuellin, Impact of Aeroelasticity on Hypersonic Intake Performance, International Soc. of Airbreathing Engines Paper ISABE-2019-24059, Canberra, Australia, Sept. 2019.
    【26】 Fluent, A. N. S. Y. S., ANSYS Fluent Theory Guide, Ansys Inc., USA.
    【27】 J. L. Brown, Turbulence Model Validation for Hypersonic Flows, AIAA Paper No. 2002-3308, Jun. 2002.
    【28】 J. Muylaert, L. Walpot, J. Häuser, P. Sagnier, D. Devezeaux, O. Papirnyk, D. Lourme, Standard Model Testing in the European High Enthalpy Facility F4 and Extrapolation to Flight, AIAA Paper 92-3905, July 1992.
    【29】 D. Hash, J. Olejniczak, M. Wright, D. Prabhu, M. Pulsonetti, B. Hollis, P. Gnoffo, M. Barnhardt, I. Nompelis, G. Candler, FIRE II Calculations for Hypersonic Nonequilibrium Aerothermodynamics Code Verification: DPLR, LAURA, and US3D, AIAA Paper 2007-0605, 2007.
    【30】 R. Savajano, D. F. Potter, O. Joshi, P. Leyland, Radiation Analysis for the FIRE II Entry Conditions Using a Tangent Slab Approach, Proceeding of 4th International Workshop Radiation of High Temperature Gases in Atmospheric Entry, Switzerland, October 2010.
    【31】 P. D. Santos, A. Lani, An Object-Oriented Implementation of a Parallel Monte Carlo Code for Radiation Transport, Computer Physics Communications 202 (2016) 233-261.
    【32】 R. N. Gupta, J. M. Yos, R. A. Thompson, K. P. Lee, A Review of Reaction Rates and Thermodynamic and Properties for an 11-Species Air Model for Chemical and Thermal Nonequilibrium Calculation to 30000 K, NASA-RP-1232, 1990.
    【33】 A. M. Smith, H. A. Hassan, Nongray Radiation Effects on the Hypersonic Boundary Layer over a Flat Plate, AIAA Journal, Vol. 4, No. 10, 1966, pp. 1840-1842.
    【34】 J. D. Anderson Jr., Heat Transfer from a Viscous Nongray Radiation Shock Layer, AIAA Journal, Vol. 6, No. 8, 1968, pp. 1570-1573.
    【35】 M. Natali, J. M. Kenny, L. Torre, Science and Technology of Polymeric Ablative Materials for Thermal Protection Systems and Propulsion Devices: A Review, Progress in Materials Science 84 (2016) 192-275.
    【36】 K. Upadhya, J. M. Yang, W. Hoffman, Advanced Materials for Ultrahigh Temperature Structural Applications above 2000°C, Air Force Research Laboratory, 1997.
    【37】 F. J. Buchanan, J. A. Little, Oxidation Protection of Carbon-Carbon Composites Using Chemical Vapour Deposition and Glaze Technology, Corrosion Science, Vol. 35, Nos 5-8, pp. 1243-1250, 1993.
    【38】 V. J. Murray, P. Recio, A. Caracciolo, C. Miossec, N. Balucani, P. Casavecchia, T. K. Minton, Oxidation and Nitridation of Vitreous Carbon at High Temperatures, Carbon 167 (2020) 388-402.
    【39】 E. L. Corral, R. E. Loehman, Ultra-High-Temperature Ceramic Coatings for Oxidation Protection of Carbon-Carbon Composite, Journal of the American Ceramic Society, Vol. 91, No. 5, pp. 1495-1502, 2008.
    【40】 W. G. Fahrenholtz, G. E. Hilmas, Ultra-High Temperature Ceramics: Materials for Extreme Environments, Scripta Materialia 129 (2017), pp. 94-99.
    【41】 E. L. Corral, L. S. Walker, Improved Ablation Resistance of C-C Composites Using Zirconium Diboride and Boron Carbide, Journal of European Ceramic Society 30 (2010) 2357-2364.
    【42】 N. S. Jacobson, D. M. Curry, Oxidation Microstructure Studies of Reinforced Carbon/Carbon, Carbon 44 (2006) 1142-1150.
    【43】 F. Smeacetto, M. Salvo, M. Ferraris, Oxidation Protective Multilayer Coatings for Carbon-Carbon Composites, Carbon 40 (2002) 583-587.
    【44】 S. Mungiguerra, A. Cecere, R. Savino, F. Saraga, F. Monteverde, D. Sciti, Improved Aero-Thermal Resistance Capabilities of ZrB2-Based Ceramics in Hypersonic Environment for Increasing SiC Content, Corrosion Science 178 (2021) 109067.
    【45】 S. R. Levine, E. J. Opila, M. C. Halbig, J. D. Kiser, M. Singh, J. A. Salem, Evaluation of Ultra-High Temperature Ceramics for Aeropropulsion Use, Journal of European Ceramic Society 22 (2002) 2757-2767.
    【46】 Y. D. Blum, J. Marschall, D. Hui, S. Young, Thick Protective UHTC Coatings for SiC-Based Structure: Process Establishment, Journal of the American Ceramic Society, Vol. 91, No. 5, pp. 1453-1460, 2008.
    【47】 R. L. Potts, Application of Integral Methods to Ablation Charring Erosion, A Review, Journal of Spacecraft and Rockets, Vol. 32, No. 2, 1995.
    【48】 St. G. Müller, R. Eckstein, J. Fricke, D. Hofmann, R. Hofmann, R. Horn, H. Meshing, O. Nilsson, Experimental and Theoretical Analysis of the High Temperature Thermal Conductivity of Monocrystalline SiC, Materials Science Forum Vols. 264-268 (1998) pp. 623-626.
    【49】 L. Muehlhoff, W. J. Choyke, M. J. Bozack, J. T. Yates, Comparative Electron Spectroscopic Studies of Surface Segregation on SiC(0001) and SiC(0001̅), Journal of Applied Physics, Vol. 60, No. 8, 1986, pp. 2842- 2853.
    【50】 D. Alfano, L. Scatteia, S. Cantoni, M. Balat-Pichelin, Emissivity and Catalycity Measurements on SiC-Coated Carbon Fibre Reinforced Silicon Carbide Composite, Journal of the European Ceramic Society, Vol. 29, No. 10, 2009, pp. 2045-2051.
    【51】 C. Y. Lai, T. S. Leu, Two Coupled Analysis Strategies for MeltAblation Modeling of Thermal Protection Material in Supersonic GasParticle Two-Phase Impingement Flow, Aerospace 2023, 10, 583.
    【52】 J. J. Bertin, Hypersonic Aerothermodynamics, Washington, DC,AIAA Education Series, 1994.
    【53】 P. A. Gnoffo, C. O. Johnston, R. A. Thompson, Implementation of Radiation, Ablation, and Free Energy Minimization Models for Coupled Simulations of Hypersonic Flow, AIAA Paper 2009-1399, Jan. 2009.

    下載圖示 校內:2025-09-01公開
    校外:2025-09-01公開
    QR CODE