| 研究生: |
蔡國順 Tsai, Guo-Shun |
|---|---|
| 論文名稱: |
背向式散射電子繞射儀之雜訊統計分析 On Noise Statistics of Electron Backscattering Diffraction |
| 指導教授: |
郭瑞昭
Kuo, Jui-Chao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 背向式散射電子繞射儀 、角度解析度 、取向差 |
| 外文關鍵詞: | EBSD, angular resolution, misorientation |
| 相關次數: | 點閱:64 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討試片準備方法對角度解析度的影響,利用純度為99.99%的商用無氧銅柱做為長晶的原料,待使用Bridgeman方法獲得Cu單晶,對此銅單晶試片施以不同試片處理方式,再以EBSD對其單晶表面進行晶體方位測量,以分析軟體OIM analysis分析。
實驗結果以兩部分進行討論:第一部分針為試片準備過程所造成的取向擴張,發現對於使用粒徑越大的拋光粉當最後拋光製程時,可以觀察到極圖中的極點有取向擴張越大的現象,隨著拋光粒徑由1μm至0.02μm時,將造成試片的EBSD的取向差由4.0°至1.0°;而電解拋光造成EBSD的取向差為0.8°。
第二部分針對試片準備過程所造成的取向差雜訊進行分析,取向差雜訊可分為Type I及Type II兩類。Type I為隨機雜訊,介於取向差0°及0.7°之間,此類雜訊多為隨機分佈;Type II為製備雜訊,在0.7°及 值之間( 為涵蓋95%隨機變數值),Type II雜訊多分佈於製備時所造成的刮痕附近,對應使用拋光粒徑1μm、0.3μm、0.02μm及電解拋光之試片,Type II範圍值分別為3.3°、0.4°、0.3°、0.1°。
In this study, the effect of sample preparation on the angular resolution was investigated using 99.99% copper single crystal which was produced by Bridgeman method. Specimen of single crystal coppers were mechanically polished using 1, 0.3, 0.02μm and electro-polishing, respectively. And then all EBSD measurements were performed using a step size of 85nm under 30kV.
It was found that using larger polishing particle size results in a larger orientation spread. As the polishing particle size were decreased from 1 to 0.02μm, the value of , that is, 95% of the total values, was also reduced from 4.0° to 1.0° and 0.8° for electro polishing.
The misorientation noise can be defined as Type I and Type II. Type I means “random noise” in the range of 0° and 0.7°, which is a random distribution. Besides, Type II is called “sample preparation noise” between 0.7° and that usually exists near scratched areas. Moreover, the range between 0.7° and are 3.3°、0.4°、0.3°、0.1°for using polishing particle size of 1、0.3、0.02μm and electro polishing, respectively.
[1] V. Randle, O. Engler, Introduction to Texture Analysis : Macrotexture, Microtexture and Orientation, CRC Press, 2000, United States of America.
[2] E. K. Polychroniadis, P. Delavignett, “Accurate Characterization of Subgrain Boundaries in a TEM.”, Physica Status Solidi (a) 77 (1983), p. 291.
[3] D. Chen, J. C. Kuo, “Bilateral Flter Based Orientation Smoothing of EBSD Data.”, Ultramicroscopy (accepted on line).
[4] G.A. Frank, R.Z. Shneck, “Subgrains Analysis in α-Uranium Using Combined TEM and Single Crystal Plasticity Theory.”, Interface science 10 (2002), p.67.
[5] K. Kunze, S. I. Wright, B. L. Adams, D. J. Dingley, “Advances in Automatic EBSP Single Orientation Measurements.”, Textures and Microstructures 20 (1993), p.41.
[6] M. M. Nowell, S. I. Wright, “Phase differentiation via combined EBSD and XEDS.”, Journal of Microscopy 213 (2004), p.296.
[7] Orientation Imaging Microscopy Analysis v.5.2, Ametek, 2007, United States of America.
[8] N. C. Krieger Lassen, K. Conradsen, D. Juul Jensen, “Image Processing Procedures for Analysis of Electron Back Scattering Patterns.”, Scanning Microscopy 6 (1992), p.115.
[9] S. I. Wright, B. L. Adams, “Automatic Analysis of Electron Backscatter Diffraction Patterns.”, Metallurgical Transactions A 23 (1992), p.759.
[10] J. A. Venables, C. J. Harland, “Electron backscattering patterns—A new technique for obtaining crystallographic information in the scanning electron microscope.”, Philosophical Magazine. 27 (1973), p.1193.
[11] N. Alam, M. Blackman, D. W. Pashley, “High-angle Kikuchi patterns.”, Proceedings of the Royal Society of London A. 221 (1954), p.224.
[12] F. C. Frank, “Orientation Mapping.”, Metallurgical Transactions. 19A (1988), p.403.
[13] A. J. Schwartz, M. Kumar, B. L. Adams, Electron Backscatter Diffraction in Material Science. Springer, 2000, United States of America.
[14] F. J. Humphreys, P. S. Bate, P. J. Hurley, “Orientation averaging of electron backscattered diffraction data.”, Journal of Microscopy. 201 (2001), p.50.
[15] Q. Xing, X. Huang, N. Hansen, “Recovery of Heavily Cold-Rolled Aluminum: Effect of Local Texture.”, Metallurgical and Materials Transactions. 37A (2006), p.1312.
[16] Q. Liu, X. Huang, D.J. Lloyd, N. Hansen, “Microstructure and strength of commercial purity aluminium (AA 1200) cold-rolled to large strains.”, Acta Materialia, 50 (2002), p.3789.
[17] D.A. Hughes, N. Hansen, ” Microstructure and strength of nickel at large strains.”, Acta Materialia, 48 (2000), p.2985.