簡易檢索 / 詳目顯示

研究生: 陳庭萱
Chen, Ting-Hsuan
論文名稱: 二維水動力學模式TELEMAC-2D模式驗證與應用
Validation and application of hydrodynamic model TELEMAC-2D
指導教授: 張駿暉
Jang, Jiun-Huei
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 69
中文關鍵詞: TELEMAC-2D模式潰壩實驗彎道淹水模擬紊流模式平流計算法
外文關鍵詞: TELEMAC-2D model, dam break, experimental bend channel, flood simulation, turbulence model, advection scheme
相關次數: 點閱:221下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用法國電力公司所屬水利與環境實驗室所研發多功能流體力學系統TELEMAC-MACARET二維水動力學模型TELEMAC-2D,以台灣河川水力學常見之三種經典案例:潰壩、河川彎道與淹水,結合不同紊流模式與平流計算數值方法,使用Intel® Core i7-8700六核心處理器進行模式驗證及相關應用之探討。
    潰壩模擬以美國兵工團實驗室資料針對水深進行驗證,紊流模式之選擇對潰壩模擬影響甚微,最佳平流計算法為NERD法,儘管鄰近壩體斷面受湧浪波衝擊而出現些許模擬誤差,整體模擬結果良好,計算時間為106秒。河川彎道定床模擬採用彎道實驗資料,以剪應力與流速進行驗證,受二次流作用與邊界摩擦力影響,上游與中游靠近兩岸模擬結果較差,最佳紊流模式與平流計算法為Elder模型與SUPG居中半隱式法,計算時間為52秒。淹水模擬採用2019年8月13日豪雨期間三爺宮溪流域淹水事件作為驗證事件,雨量站採用仁德雨量站資料,考量研究區域水理地文特性,採用恆定黏滯係數紊流模式進行模擬,最佳平流計算法為特性線法,計算時間為25秒,正確率及命中率高達70%,誤報率低於25%,若結合洪水預警系統,可達到有效防洪效果。
    綜合以上分析,TELEMAC-2D模式成功模擬潰壩、河川彎道與淹水,儘管無法非常準確模擬二次流與水深或速度快速變化處之流動,結合多功能性、整合性強、計算速度快且完全免費之特性,本研究認為TELEMAC-2D模式為富有競爭力之二維水動力學模式,具有深入研究與使用之價值,未來可以與水質模塊WAQTEL或二維泥沙傳輸模型SISYPHE耦合,或使用三維水動力學模式TELEMAC-3D進行模擬,倘若廣泛運用於其他水利相關領域,將有利於未來工程規劃與設計。

    TELEMAC-MASCARET is a fully free integrated hydraulic system made by the National Hydraulics and Environment Laboratory of the Research and Development Directorate of the French Electricity Board. In this study, three classical cases in river hydraulics field were used to validate the two-dimensional hydrodynamic model of TELEMAC-MASCARET called TELEMAC-2D model.
    The validation cases include a dam break, a river bend with fixed bed topography, and a flood cases. We combined different turbulence models and different advection schemes to evaluate the simulation performance for each case.
    In the dam break case, the influence of turbulence models was extremely small and the NERD scheme was the fittest advection scheme. The Elder turbulence model with the centred semi implicit scheme plus SUPG was the best combination for the river bend case. In the flood case, the constant viscosity turbulence model and the method of characteristics were chosen due to the consideration of the hydrogeological condition of the study area and the simulated results.
    Although TELEMAC-2D model has its limitation while simulating certain situations such as the secondary flow with rapid changes of flow velocity and depth, it has the ability to simulate the dam break, the river bend, and the flooding successfully. Therefore, the TELEMAC-2D model can be considered as a potential hydrodynamic software to be promoted in other hydraulics domain in the future.

    中文摘要 I 英文摘要 II 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.2.1 潰壩模擬 2 1.2.2 河川彎道定床模擬 4 1.2.3 淹水模擬 5 1.3 文章架構 7 第二章 研究案例 8 2.1 潰壩模擬 9 2.1.1 實驗配置 9 2.1.2 初始條件 9 2.1.3 邊界條件 9 2.1.4 網格設置 9 2.2 河川彎道定床模擬 10 2.2.1 實驗配置 10 2.2.2 初始條件 11 2.2.3 邊界條件 11 2.2.4 網格設置 11 2.3 淹水模擬 12 2.3.1 研究區域與水文資料 12 2.3.2 初始條件 14 2.3.3 邊界條件 14 2.3.4 網格設置 14 第三章 研究方法 16 3.1 TELEMAC-MACARET系統 16 3.2 TELEMAC-2D模組 17 3.2.1 模組簡介 17 3.2.2 降雨逕流模式 17 3.2.3 紊流模式 18 3.2.4 摩擦力定理 20 3.2.5 二次流修正 21 3.2.6 平流計算數值方法 22 3.2.7 迭代演算 24 3.3 評估指標 25 3.3.1 回歸指標 25 3.3.2 淹水範圍指標 25 第四章 結果與討論 27 4.1 潰壩模擬 27 4.1.1 紊流模式 27 4.1.2 平流計算數值方法 28 4.2 河川彎道定床模擬 33 4.2.1 紊流模式 34 4.2.2 平流計算數值方法 43 4.3 淹水模擬 46 4.3.1 最大淹水深度模擬 46 4.3.2 淹水時序列 49 第五章 結論與建議 51 5.1 潰壩模擬 51 5.2 河川彎道定床模擬 51 5.3 淹水模擬 52 5.4 總結 53 5.5 建議 53 參考文獻 54 附錄一 TELEMAC-MASCARET軟體安裝 58 附錄二 有限元素非結構性格網製作 64 附錄三 FUDAA-PREPRO操作說明 68

    1. Abdalla, R., Tao, C. V., Wu, H., & Maqsood, I. (2006). A GIS-supported 3D approach for flood risk assessment of the Qu'Appelle River, Southern Saskatchewan. International Journal of Risk Assessment and Management, 6(4-6), 440-455.
    2. Almeida, J. R. M. D., & Ota, J. J. (2020). Comparative study between turbulence models in curved channels. RBRH, 25.
    3. Amicarelli, A., Kocak, B., Sibilla, S., & Grabe, J. (2017). A 3D smoothed particle hydrodynamics model for erosional dam-break floods. International Journal of Computational Fluid Dynamics, 31(10), 413-434.
    4. Begnudelli, L., & Sanders, B. F. (2007). Simulation of the St. Francis dam-break flood. Journal of Engineering Mechanics, 133(11), 1200-1212.
    5. Begnudelli, L., Valiani, A., & Sanders, B. F. (2010). A balanced treatment of secondary currents, turbulence and dispersion in a depth-integrated hydrodynamic and bed deformation model for channel bends. Advances in Water Resources, 33(1), 17-33.
    6. Bernard, R. S., & Schneider, M. L. (1992). Depth-averaged numerical modeling for curved channels.
    7. Berz, G. A. (1999). Catastrophes and climate change: concerns and possible countermeasures of the insurance industry. Mitigation and Adaptation Strategies for Global Change, 4(3), 283-293.
    8. Bridge, J. S., & Jarvis, J. (1982). The dynamics of a river bend: a study in flow and sedimentary processes. Sedimentology, 29(4), 499-541.
    9. Bronstert, A. (1995). River flooding in Germany: influenced by climate change?. Physics and Chemistry of the Earth, 20(5-6), 445-450.
    10. Bronstert, A. (1996). Hochwasser in Deutschland unter Aspekten globaler Veränderungen. Bericht über das DFG-Rundgespräch am 9. Oktober 1995 in Potsdam.
    11. Bronstert, A. (2003). Floods and climate change: interactions and impacts. Risk Analysis: An International Journal, 23(3), 545-557.
    12. Bronstert, A., Niehoff, D., & Bürger, G. (2002). Effects of climate and land‐use change on storm runoff generation: present knowledge and modelling capabilities. Hydrological processes, 16(2), 509-529.
    13. Brufau, P., & Garcia‐Navarro, P. (2000). Two‐dimensional dam break flow simulation. International Journal for numerical methods in fluids, 33(1), 35-57.
    14. Çağatay, H., & Kocaman, S. (2008). Experimental study of tailwater level effects on dam break flood wave propagation. In Proceedings River Flow (pp. 635-644).
    15. Chang, H. K. (1997). Simulation of bed topography and flow field in channel bend (Doctoral dissertation, MS thesis, Dept. of Civil Eng., National Taiwan Univ., Taipei, Taiwan (in Chinese)).
    16. Chanson, H. (2009). Application of the method of characteristics to the dam break wave problem. Journal of Hydraulic Research, 47(1), 41-49.
    17. Chiu, C. L., Lin, H. C., & Hsiung, D. E. (1978). Three-dimensional open channel flow. Journal of the Hydraulics Division, 104(8), 1119-1136.
    18. De Vriend, H. J. (1977). A mathematical model of steady flow in curved shallow channels. Journal of Hydraulic Research, 15(1), 37-54.
    19. El Kadi Abderrezzak, K., Ata, R., Tassi, P., Wang, D., Hervouet, J. M., & Die Moran, A. (2014). 2-D and 3-D numerical modeling of dam break waves over moveable beds.
    20. Hervouet, J. M. (2000). A high resolution 2‐D dam‐break model using parallelization. Hydrological processes, 14(13), 2211-2230.
    21. Horritt, M. S., & Bates, P. D. (2002). Evaluation of 1D and 2D numerical models for predicting river flood inundation. Journal of hydrology, 268(1-4), 87-99.
    22. Jang, J. H., Chang, T. H., & Chen, W. B. (2018). Effect of inlet modelling on surface drainage in coupled urban flood simulation. Journal of Hydrology, 562, 168-180.
    23. Jang, J. H., Hsieh, C. T., & Chang, T. H. (2019). The importance of gully flow modelling to urban flood simulation. Urban Water Journal, 16(5), 377-388.
    24. Jin, Y. C., & Steffler, P. M. (1993). Predicting flow in curved open channels by depth-averaged method. Journal of Hydraulic Engineering, 119(1), 109-124.
    25. Johannesson, H., & Parker, G. (1989). Velocity redistribution in meandering rivers. Journal of hydraulic engineering, 115(8), 1019-1039.
    26. Kasvi, E., Alho, P., Lotsari, E., Wang, Y., Kukko, A., Hyyppä, H., & Hyyppä, J. (2015). Two‐dimensional and three‐dimensional computational models in hydrodynamic and morphodynamic reconstructions of a river bend: sensitivity and functionality. Hydrological processes, 29(6), 1604-1629.
    27. Kundzewicz, Z. W., & Takeuchi, K. (1999). Flood protection and management: quo vadimus?. Hydrological Sciences Journal, 44(3), 417-432.
    28. Lane, S. N., & Ferguson, R. I. (2005). Modelling reach-scale fluvial flows (pp. 217-269). Wiley: New York.
    29. Larocque, L. A., Imran, J., & Chaudhry, M. H. (2013). 3D numerical simulation of partial breach dam-break flow using the LES and k–ϵ turbulence models. Journal of Hydraulic Research, 51(2), 145-157.
    30. Leal, J. G. A. B., Ferreira, R. M., Cardoso, A. H., Bousmar, D., & Zech, Y. (2002, September). Dam-break waves on movable bed. In River flow (pp. 981-990).
    31. Leschziner, M. A., & Rodi, W. (1979). Calculation of strongly curved open channel flow. Journal of the Hydraulics Division, 105(10), 1297-1314.
    32. Lien, H. C., Hsieh, T. Y., Yang, J. C., & Yeh, K. C. (1999). Bend-flow simulation using 2D depth-averaged model. Journal of Hydraulic Engineering, 125(10), 1097-1108.
    33. Lin, B., Wicks, J. M., Falconer, R. A., & Adams, K. (2006, March). Integrating 1D and 2D hydrodynamic models for flood simulation. In Proceedings of the institution of civil engineers-water management (Vol. 159, No. 1, pp. 19-25). Thomas Telford Ltd.
    34. Malcherek, A. (2000). Application of TELEMAC‐2D in a narrow estuarine tributary. Hydrological processes, 14(13), 2293-2300.
    35. Menzel, L., Niehoff, D., Bürger, G., & Bronstert, A. (2002). Climate change impacts on river flooding: a modelling study of three meso-scale catchments. In Climatic change: implications for the hydrological cycle and for water management (pp. 249-269). Springer, Dordrecht.
    36. Milhous, R. T. (2015). On grain roughness in rivers and streams (Doctoral dissertation, Colorado State University. Libraries).
    37. Mockmore, C. A. (1944). Flow around bends in stable channels. Transactions of the American Society of Civil Engineers, 109, 593-618.
    38. O'Brien, J. S., Julien, P. Y., & Fullerton, W. T. (1993). Two-dimensional water flood and mudflow simulation. Journal of hydraulic engineering, 119(2), 244-261.
    39. Ozmen-Cagatay, H., & Kocaman, S. (2011). Dam-break flow in the presence of obstacle: experiment and CFD simulation. Engineering applications of computational fluid mechanics, 5(4), 541-552.
    40. Park, I. R., Kim, K. S., Kim, J., & Van, S. H. (2012). Numerical investigation of the effects of turbulence intensity on dam-break flows. Ocean Engineering, 42, 176-187.
    41. Reisenbüchler, M., Bui, M. D., Skublics, D., & Rutschmann, P. (2019). An integrated approach for investigating the correlation between floods and river morphology: A case study of the Saalach River, Germany. Science of the Total Environment, 647, 814-826.
    42. Ritter, A. (1892). Die fortpflanzung der wasserwellen. Zeitschrift des Vereines Deutscher Ingenieure, 36(33), 947-954.
    43. Rong, Y., Zhang, T., Zheng, Y., Hu, C., Peng, L., & Feng, P. (2020). Three-dimensional urban flood inundation simulation based on digital aerial photogrammetry. Journal of Hydrology, 584, 124308.
    44. Saad, Y., & Schultz, M. H. (1986). GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on scientific and statistical computing, 7(3), 856-869.
    45. Seenath, A., Wilson, M., & Miller, K. (2016). Hydrodynamic versus GIS modelling for coastal flood vulnerability assessment: Which is better for guiding coastal management?. Ocean & Coastal Management, 120, 99-109.
    46. Stansby, P. K., Chegini, A., & Barnes, T. (1998). The initial stages of dam-break flow. Journal of Fluid Mechanics, 374, 407-424.
    47. Stelling, G. S., & Verwey, A. (2006). Numerical flood simulation. Encyclopedia of hydrological sciences.
    48. Stoker, J. J. (1957). Water Waves. The Mathematical Theory with Applications, Interscience Publ. Inc., New York.
    49. Thieken, A. H., Kienzler, S., Kreibich, H., Kuhlicke, C., Kunz, M., Mühr, B., ... & Schröter, K. (2016). Review of the flood risk management system in Germany after the major flood in 2013. Ecology and Society, 21(2).
    50. Valiani, A., Caleffi, V., & Zanni, A. (2002). Case study: Malpasset dam-break simulation using a two-dimensional finite volume method. Journal of Hydraulic Engineering, 128(5), 460-472.
    51. Villaret, C., Hervouet, J. M., Kopmann, R., Merkel, U., & Davies, A. G. (2013). Morphodynamic modeling using the Telemac finite-element system. Computers & Geosciences, 53, 105-113.
    52. W. E. S. (Waterways Experiment Station) 1960. Floods resulting from suddenly breached dams, Misc. paper N. 2-374, Report 1: Conditions of Minimum Resistance, 1960, U. S. Army Corps of Engineering, Vicksburg, Miss., U. S. A.
    53. Wang, D., & Tassi, P. (2014). Secondary flow corrections into the telemac-mascaret modelling system. In Proceedings of the 21st TELEMAC-MASCARET User Conference 2014, 15th-17th October 2014, Grenoble–France (pp. 225-233).
    54. Yang, C., Lin, B., Jiang, C., & Liu, Y. (2010). Predicting near-field dam-break flow and impact force using a 3D model. Journal of Hydraulic Research, 48(6), 784-792.
    55. Ye, J., & McCorquodale, J. A. (1998). Simulation of curved open channel flows by 3D hydrodynamic model. Journal of Hydraulic Engineering, 124(7), 687-698.
    56. Yeh, K. C., & Kennedy, J. F. (1993). Moment model of nonuniform channel-bend flow. I: Fixed beds. Journal of Hydraulic Engineering, 119(7), 776-795.
    57. Yen, B. C. (1965). Characteristics of subcritical flow in a meandering channel. The University of Iowa.
    58. 李明熹(2006). 土石流發生降雨警戒分析及其應用. 國立成功大學.

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE