| 研究生: |
吳震捷 Wu, Chen-Chien |
|---|---|
| 論文名稱: |
陽極氧化製程參數與封孔處理對商用鋁合金的性質影響與應用 Effect of anodization parameters and sealing treatment on properties and application of commercial aluminum alloys |
| 指導教授: |
鍾震桂
Chung, Chen-Kuei |
| 共同指導教授: |
王俊志
Wang, Jiunn-Jyh Junz |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 陽極氧化鋁 、不同陽極氧化電位 、商用鋁和金 、傳統封孔處理法 、陽極氧化鋁表面抗腐蝕性 、接觸角 、陽極氧化鋁表面硬度 |
| 外文關鍵詞: | anodic aluminum oxide, different anodic voltage, commercial aluminum alloys, sealing treatment, Hardness, corrison resistant, contact angle |
| 相關次數: | 點閱:44 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究透過複合式脈衝陽極氧化(Hybrid Pulse Anodization, HPA)製程技術,使用工業的商售鋁合金(AA1050、AA5052、AA6061),探討在室溫中將不同成分的鋁合金基板於0.3 M濃度的草酸中進行陽極氧化處理,藉由不同陽極氧化電位參數、陽極時間製備出奈米多孔型陽極氧化鋁模板,尋找快速且低成本製備AAO的最佳製程參數。接著藉由傳統封孔處理(沸水封孔與醋酸鎳封孔)填滿孔洞結構,並且經由其製程改變AAO微結構進而改善表面特性。由實驗結果發現封孔製程除了改善陽極氧化鋁薄膜的抗壓強度外,也能提升奈米薄膜的防蝕性。本篇論文成功地在室溫中以高陽極氧化電位製備出商用鋁合金的AAO,製備時間只需花費5-40分鐘,並且測試出最佳的沸水封孔製程參數,能改善AAO的表面特性,測量AAO表面硬度原為400 HV0.1左右沸水封孔後可達到600 HV0.1以上;而在防蝕性能上,我們觀察腐蝕電流密度則從原約10-6 A/cm2降低至約10-9 A/cm2,相差近千倍,其研究成果能應用於未來AAO薄膜塗層的3C產品外殼,有效提高奈米薄膜的表面機械特性。
This study investigates the use of industrial aluminum alloys (AA1050, AA5052, AA6061) in the hybrid pulse anodization (HPA) process, a composite pulse anodization technique. The goal is to explore the anodization treatment of different aluminum alloy substrates in 0.3 M oxalic acid at room temperature. By setting specific voltage parameters (40-100V) and anodization time, nano-porous anodic aluminum oxide (AAO) templates are prepared to achieve rapid and low-cost fabrication of AAO with optimal process parameters. Subsequently, traditional sealing treatments (boiling water sealing and nickel acetate sealing) are employed to fill the pore structures, thereby modifying the AAO microstructure and improving its surface properties.
Experimental results reveal that the sealing process not only enhances the compressive strength of the anodic aluminum oxide film but also improves its corrosion resistance. This study successfully demonstrates the room temperature fabrication of AAO from commercial aluminum alloys using high anodization voltages, with a process time ranging from 5 to 40 minutes. The optimal parameters for hot water sealing are identified, leading to improved surface characteristics of AAO. The measured surface hardness of AAO, which is originally around 400 HV0.1, can reach above 600 HV0.1 after hot water sealing. In terms of corrosion resistance, the corrosion current density decreases from approximately 10-6 A/cm2 to approximately 10-9 A/cm2, a difference of nearly a thousand times. These research findings can be applied to future AAO thin film coatings in 3C product casings, effectively enhancing the surface mechanical properties of nano-thin films.
[1] G. Thompson, "Porous anodic alumina: Fabrication, characterization and applications." Thin Solid Films, vol. 297, pp. 192-201, 1997.
[2] H. Masuda & K. Fukuda, "Ordered metal nanohole arrays made by a 2-step replication of honeycomb structures of anodic alumina." Science, vol. 268, , pp. 1466-1468, 1995.
[3] K. Y. Ng, Y. Lin, & A. H. W. Ngan, "Deformation of anodic aluminum oxide nano-honeycombs during nanoindentation," Acta Mater., vol. 57, pp. 2710-2720, 2009.
[4] C. M. Liu, C. Chen, & H. E. Cheng, "Growth mechanism of TiO2 nanotube arrays in nanopores of anodic aluminum oxide on Si substrates by atomic layer deposition." J. Electrochem., vol. 158, pp. K58-K63, 2011.
[5] F. Liu, J. Y. Lee, & W. J. Zhou, "Template preparation of multisegment PtNi nanorods as methanol electro-oxidation catalysts with adjustable bimetallic pair sites." J. Phys. Chem. B, vol. 108, pp. 17959-17963, 2004.
[6] C. K. Chung, R. X. Zhou, T. Y. Liu, & W. T. Chang, "Hybrid pulse anodization for the fabrication of porous anodic alumina films from commercial purity (99%) aluminum at room temperature." Nanotechnology, vol. 20, pp. 5, 2009.
[7] W. Lee, R. Ji, U. Gosele, & K. Nielsch, "Fast fabrication of long-range ordered porous alumina membranes by hard anodization." Nat. Mater, vol. 5, pp. 741-747, 2006.
[8] K. Wefers, "The Mechanism of Sealing of Anodic Oxide Coatings on Aluminum. Pt. 1." Aluminium, vol. 49, pp. 553-561, 1973.
[9] F. Keller, M. S. Hunter, & D. L. Robinson, " Structural features of oxide coatings on aluminium, ” J. Electrochem. Soc, vol. 100, pp. 411-419, 1953.
[10] J. P. Osullivan & G. C. Wood, "Morphology and mechanism of formation of porous anodic films on aluminium.” Proc. R. Soc. Lond. A-Math. Phys. Sci., vol. 317, pp. 511, 1970.
[11] G. Thompson & G. Wood, "Porous anodic film formation on aluminium." Nature, vol. 290, pp. 230-232, 1981.
[12] A. Santos, V. S. Balderrama, M. Alba, P. Formentín, J. Ferré‐Borrull, J. Pallarès, & L. F. Marsal, "Nanoporous Anodic Alumina Barcodes: Toward Smart Optical Biosensors." Adv. Mater, vol. 24, pp. 1050-1054, 2012.
[13] Z. Wu, C. Richter, & L. Menon, "A study of anodization process during pore formation in nanoporous alumina templates." J. Electrochem. Soc, vol. 154, pp. E8-E12, 2007.
[14] F. Y. Li, L. Zhang, & R. M. Metzger, "On the growth of highly ordered pores in anodized aluminum oxide." Chem. Mat, vol. 10, pp. 2470-2480, 1998.
[15] S. K. Thamida & H. C. Chang, "Nanoscale pore formation dynamics during aluminum anodization." Chaos, vol. 12, pp. 240-251, 2002.
[16] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, "Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina," J. Appl. Phys, vol. 84, pp. 6023-6026, 1998.
[17] V. P. Parkhutik & V. I. Shershulsky, "Theoretical mobeltical modeling of porous oxide growth on aluminum." J. Phys. D-Appl. Phys., vol. 25, pp. 1258-1263, 1992.
[18] H. Masuda & M. Satoh, "Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask." Jpn. J. Appl. Phys. Part 2 - Lett., vol. 35, pp. 126-129, 1996.
[19] G. D. Sulka, A. Brzózka, L. Zaraska, E. Wierzbicka, & A. Brudzisz, "AAO templates with different patterns and channel shapes." Submicron Porous Materials, pp. 107-156, 2017.
[20] H. Masuda, K. Kanezawa, & K. Nishio, "Fabrication of ideally ordered nanohole arrays in anodic porous alumina based on nanoindentation using scanning probe microscope." Chem. Lett., pp. 1218-1219, 2002.
[21] W. Lee, R. Scholz, & U. Gosele, "A continuous process for structurally well-defined Al2O3 nanotubes based on pulse anodization of aluminum." Nano Lett, vol. 8, pp. 2155-2160, 2008.
[22] W. Lee, "The Anodization of Aluminum for Nanotechnology Applications," Jom, vol. 62, pp. 57-63, 2010.
[23] C. K. Chung, W. T. Chang, M. W. Liao, H. C. Chang, & C. T. Lee, "Fabrication of enhanced anodic aluminum oxide performance at room temperatures using hybrid pulse anodization with effective cooling." Electrochim. Acta, vol. 56, pp. 6489-6497, 2011.
[24] Y. Li, Y. Qin, S. Jin, X. Hu, Z. Ling, Q. Lin, J. Liao, C. Chen, Y. Shen, L. Jin "A new self-ordering regime for fast production of long-range ordered porous anodic aluminum oxide films." Electrochim. Acta, vol. 178, pp. 11-17, 2015.
[25] K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, & U. Gosele, "Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization." ACS Nano, vol. 2, pp. 302-310, 2008.
[26] S. Wang, G. J. Yu, J. L. Gong, D. Z. Zhu, & H. H. Xia, "Large-area uniform nanodot arrays embedded in porous anodic alumina." Nanotechnology, vol. 18, pp. 4, 2007.
[27] G. D. Sulka & W. J. Stepniowski, "Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures." Electrochim. Acta, vol. 54, pp. 3683-3691, 2009.
[28] T. Kumeria & D. Losic, "Controlling interferometric properties of nanoporous anodic aluminium oxide." Nanoscale Res. Lett, vol. 7, p. 10, 2012.
[29] D. A. Wang, L. B. Zhang, W. Lee, M. Knez, & L. F. Liu, "Novel Three-Dimensional Nanoporous Alumina as a Template for Hierarchical TiO2 Nanotube Arrays." Small, vol. 9, pp. 1025-1029, 2013.
[30] A. Santos, V. S. Balderrama, M. Alba, P. Formentín, J. Ferré-Borrull, J. Pallarès, Lluís F. Marsal, "Nanoporous Anodic Alumina Barcodes: Toward Smart Optical Biosensors." Adv. Mater, vol. 24, pp. 1050-1054, 2012.
[31] L. K. Tan, H. Gao, Y. Zong, & W. Knoll, "Atomic Layer Deposition of TiO2 to Bond Free-Standing Nanoporous Alumina Templates to Gold-Coated Substrates as Planar Optical Waveguide Sensors."J. Phys. Chem. C, vol. 112, pp. 17576-17580, 2008.
[32] D. Choi, Y. Choi, S. Hong, T. Kang, & L. P. Lee, "Self-Organized Hexagonal-Nanopore SERS Array." Small, vol. 6, pp. 1741-1744, 2010.
[33] M. Norek, M. Dopierala, & W. J. Stepniowski, "Ethanol influence on arrangement and geometrical parameters of aluminum concaves prepared in a modified hard anodization for fabrication of highly ordered nanoporous alumina." J. Electroanal. Chem., vol. 750, pp. 79-88, 2015.
[34] S. Li, Y. Li, S. Jin, J. Wu, Z. Li, X. Hu, & Z. Ling,, "Fabrication of Crystallized Porous Anodic Aluminum Oxide under Ultra-High Anodization Voltage." J. Electrochem. Soc., vol. 165, pp. E623-E627, 2018.
[35] C. W. Hun, Y. J. Chiu, Z. P. Luo, C. C. Chen, & S. H. Chen, "A New Technique for Batch Production of Tubular Anodic Aluminum Oxide Films for Filtering Applications." Appl. Sci.-Basel, vol. 8, pp. 10, 2018.
[36] K. B. Kim, B. C. Kim, S. J. Ha, & M. W. Cho, "Effect of pre-treatment polishing on fabrication of anodic aluminum oxide using commercial aluminum alloy." J. Mech. Sci. Technol., vol. 31, pp. 4387-4393, 2017.
[37] M. Remešová, S. Tkachenko, D. Kvarda, I. Ročňáková, B. Gollas, M.Menelaou, L. Čelko, J. Kaiser, "Effects of anodizing conditions and the addition of Al2O3/PTFE particles on the microstructure and the mechanical properties of porous anodic coatings on the AA1050 aluminium alloy." Applied Surface Science, vol. 513, pp. 145780, 2020.
[38] X. Li, X. Nie, L. Wang, & D. Northwood, "Corrosion protection properties of anodic oxide coatings on an Al–Si alloy." Surface and Coatings Technology, vol. 200, pp. 1994-2000, 2005.
[39] S. Ateş, E. Baran, & B. Yazıcı, "The nanoporous anodic alumina oxide formed by two-step anodization." Thin Solid Films, vol. 648, pp. 94-102, 2018.
[40] S. A. Abdel-Gawad, W. M.Osman, & A. M. Fekry, "Characterization and corrosion behavior of anodized aluminum alloys for military industries applications in artificial seawater." Surfaces and Interfaces, vol. 14, pp. 314-323, 2019.
[41] M. Sundararajan, M. Devarajan, & M. Jaafar, "Investigation of surface and mechanical properties of Anodic Aluminium Oxide (AAO) developed on Al substrate for an electronic package enclosure." Surface and Coatings Technology, vol. 401, pp. 126273, 2020.
[42] T. Aerts, T. Dimogerontakis, I. De Graeve, J. Fransaer, & H. Terryn, "Influence of the anodizing temperature on the porosity and the mechanical properties of the porous anodic oxide film." Surface and Coatings Technology, vol. 201, pp. 7310-7317, 2007.
[43] M. Schneider & K. Kremmer, "The effect of bath aging on the microstructure of anodic oxide layers on AA1050." Surface and Coatings Technology, vol. 246, pp. 64-70, 2014.
[44] B. Yin, L. Fang, T. An-qiong , H. Qiu-liu , J. Hu, M. Jian-hui, G. Bai, H. Bai, "Novel strategy in increasing stability and corrosion resistance for super-hydrophobic coating on aluminum alloy surfaces." Applied Surface Science, vol. 258, pp. 580-585, 2011.
[45] X. L. Zhang, Z. H. Jiang, Z. P. Yao, Y. Song, & Z. D. Wu, "Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density." Corrosion Sci., vol. 51, pp. 581-587, 2009.
[46] A. M. Abdel-Gaber, B. A. Abd-El-Nabey, I. M. Sidahmed, A. M. El-Zayady, & M. Saadawy, "Kinetics and thermodynamics of aluminium dissolution in 1.0 M sulphuric acid containing chloride ions." Mater. Chem. Phys, vol. 98, pp. 291-297, 2006.
[47] G. Astm, "Standard practice for calculation of corrosion rates and related information from electrochemical measurements." G102-89, ASTM International, West Conshohocken, USA, 2004.
[48] W. H. Muttlak, A. A. Alwahib, A. Z. Mohammed, & H. Sayed, "Effect of Q-Switched Nd: YAG laser on the anodization of 1050 aluminum alloy." Optics & Laser Technology, vol. 125, pp. 106055, 2020.
[49] C. Jeong, J. Lee, K. Sheppard, & C. H. Choi, "Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum." Langmuir, vol. 31, pp. 11040-11050, 2015.
[50] P. Vengatesh & M. A. Kulandainathan, "Hierarchically Ordered Self-Lubricating Superhydrophobic Anodized Aluminum Surfaces with Enhanced Corrosion Resistance." ACS Appl. Mater. Interfaces, vol. 7, pp. 1516-1526, 2015.
[51] S. Zheng, C. Li, Q. Fu, W. Hu, T. Xiang, Q. Wang, M. Du, X. Liu, Z. Chen, "Development of stable superhydrophobic coatings on aluminum surface for corrosion-resistant, self-cleaning, and anti-icing applications." Mater. Des., vol. 93, pp. 261-270, 2016.
[52] R. J. Good, "A thermodynamic derivation of wenzel's modification of young's equation for contact angles; together with a theory of Hysteresis1." Journal of the American Chemical Society, vol. 74, pp. 5041-5042, 1952.
[53] R. N. Wenzel, "Resistance of solid surfaces to wetting by water," Industrial & engineering chemistry, vol. 28, pp. 988-994, 1936.
[54] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T Watanabe, "Photogeneration of highly amphiphilic TiO2 surfaces." Advanced Materials, vol. 10, pp. 135-138, 1998.
[55] J. Bico, C. Tordeux, & D. Quéré, "Rough wetting." Europhysics Letters, vol. 55, p. 214, 2001.
[56] C. Jeong & C.-H. Choi, "Single-step direct fabrication of pillar-on-pore hybrid nanostructures in anodizing aluminum for superior superhydrophobic efficiency." ACS applied materials & interfaces, vol. 4, pp. 842-848, 2012.
[57] K. Rana, G. Kucukayan-Dogu, & E. Bengu, "Growth of vertically aligned carbon nanotubes over self-ordered nano-porous alumina films and their surface properties." Applied surface science, vol. 258, pp. 7112-7117, 2012.
[58] F. Rumiche, H. Wang, W. Hu, J. Indacochea, & M. Wang, "Anodized aluminum oxide (AAO) nanowell sensors for hydrogen detection." Sensors and Actuators B: Chemical, vol. 134, pp. 869-877, 2008.
[59] J. Bachmann, A. Ellies, & K. Hartge, "Development and application of a new sessile drop contact angle method to assess soil water repellency." Journal of Hydrology, vol. 231, pp. 66-75, 2000.
[60] D. Y. Kwok & A. W. Neumann, "Contact angle measurement and contact angle interpretation." Advances in colloid and interface science, vol. 81, pp. 167-249, 1999.
[61] S. Han, R. Yang, C. Li, & L. Yang, "The wettability and numerical model of different silicon microstructural surfaces." Applied Sciences, vol. 9, pp. 566, 2019.
[62] R. L. Burwell & T. P. May, "The Measurement of Permeability Characteristics of Anodic Films on Aluminum." Journal of The Electrochemical Society, vol. 94, pp. 195-213, 1948.
[63] H. Herrera‐Hernandez, J. R. Vargas‐Garcia, J. M. Hallen‐Lopez, & F. Mansfeld, "Evaluation of different sealing methods for anodized aluminum‐silicon carbide (Al/SiC) composites using EIS and SEM techniques." Materials and Corrosion, vol. 58, pp. 825-832, 2007.
[64] J. A. Gonzalez, V. Lopez, E. Otero, A. Bautista, R. Lizarbe, C. Barba, & J. L. Baldonedo, "Overaging of sealed and unsealed aluminium oxide films." Corrosion science, vol. 39, pp. 1109-1118, 1997.
[65] Y. Zuo, P.-H. Zhao, & J.-M. Zhao, "The influences of sealing methods on corrosion behavior of anodized aluminum alloys in NaCl solutions." Surface and Coatings Technology, vol. 166, pp. 237-242, 2003.
[66] J. Lee, Y. Kim, H. Jang, & W. Chung, "Cr2O3 sealing of anodized aluminum alloy by heat treatment." Surface and Coatings Technology, vol. 243, pp. 34-38, 2014.
[67] F. Mansfeld, C. Chen, C. B. Breslin, & D. Dull, "Sealing of anodized aluminum alloys with rare earth metal salt solutions." Journal of the Electrochemical Society, vol. 145, p. 2792, 1998.
[68] M. Whelan, J. Cassidy, & B. Duffy, "Sol–gel sealing characteristics for corrosion resistance of anodised aluminium." Surface and Coatings Technology, vol. 235, pp. 86-96, 2013.
[69] R. Spooner & W. Forsyth, "X-ray emission spectrospic study of sealing of sulfuric acid anodic film on aluminum.pt.2.effect of sealing." Plating, vol. 55, pp. 341-344, 1968.
[70] K. Wefers, "The Mechanism of Sealing of Anodic Oxide Coatings on Aluminum. Pt. 1." Aluminium, vol. 49, pp. 553-561, 1973.
[71] S. U. Ofoegbu, F. A. Fernandes, & A. B. Pereira, "The sealing step in aluminum anodizing: A focus on sustainable strategies for enhancing both energy efficiency and corrosion resistance." Coatings, vol. 10, pp. 226, 2020.
[72] L. Hao & B. R. Cheng, "Sealing processes of anodic coatings—Past, present, and future." Metal Finishing, vol. 98, pp. 8-18, 2000.
[73] V. López, M. Bartolomé, E. Escudero, E. Otero, & J. González, "Comparison by SEM, TEM, and EIS of hydrothermally sealed and cold sealed aluminum anodic oxides." Journal of the Electrochemical Society, vol. 153, pp. B75, 2006.
[74] C. Chung, C. Tsai, C. Hsu, E. Kuo, Y. Chen, & I. Chung, "Impurity and temperature enhanced growth behaviour of anodic aluminium oxide from AA5052 Al-Mg alloy using hybrid pulse anodization at room temperature." Corrosion Science, vol. 125, pp. 40-47, 2017.
[75] H. Jo, S. Lee, D. Kim, & J. Lee, "Low temperature sealing of anodized aluminum alloy for enhancing corrosion resistance. " Materials, vol. 13, pp. 4904, 2020.
校內:不公開