簡易檢索 / 詳目顯示

研究生: 李睿騰
Lee, Jui-Teng
論文名稱: 以碳量子點/beta相氫氧化鐵奈米顆粒共修飾三氧化鎢奈米片並結合電漿處理以應用於高效能光電化學水分解產氫
Co-modification of WO3 nanoplates with carbon quantum dots/ß-FeOOH nanoparticles combined with plasma treatment for high-efficiency photoelectrochemical water splitting
指導教授: 陳嘉勻
Chen, Chia-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 76
中文關鍵詞: 光電化學水解產氫氬電漿處理能帶彎曲氧空缺
外文關鍵詞: WO3, Ar plasma treatment, band bending, oxygen vacancy
相關次數: 點閱:102下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著綠色能源日益被重視,具潔淨無汙染優勢的氫能之重要性被寄予厚望,各國爭相發展並投入大量技術以達成零碳排。而氫氣的產出有許多方式,其中又以光電化學水分解產氫最具有前瞻性,此為利用太陽光照射並施加微小偏壓使水分解出氫氣之技術,可直接將太陽的能量轉換成氫氣進行儲存,在光能的輔助下,不須消耗過多的能量,具有節省能源的優勢。然而光電化學水解產氫仍面臨低載子分離效率、載子介面傳輸速率緩慢及可見光吸收效果較差等因素而限制其發展。因此本研究以FeOOH奈米顆粒對WO3奈米片進行表面修飾來增加其在可見光波段的吸收,並結合氬氣電漿進行表面處理,使試片表面之氧空缺比例從原來的7.3 %提高至34.5 %,此舉有助於加速載子介面之反應速率及幫助電洞傳遞。而後,進一步加入碳量子點( CQDs )來增加有效電化學活性表面積。綜合以上方式,本研究成功製備出CQDs / Ar plasma treated FeOOH @WO3 NPs薄膜,並透過能帶結構的建立,證實材料間之協同作用有助於提升載子分離效率。最終,此複合結構薄膜於光電特性表現上,其光電流密度及有效電化學活性表面積可分別達到2.18 mA /cm2及751 μF∙cm-2,相較於純WO3奈米片,光電流密度提升將近3.5倍,且開路電位降低至425 mV,往負偏壓偏移了257 mV,展現優異光電性質。
    於機制探討,本研究以UV-vis說明FeOOH@WO3 NPs在可見光波段吸收的提升;並利用XPS研究FeOOH@WO3 NPs表面氧空缺及Fe2+/ Fe3+元素價態比例的改變;亦透過XRD探討FeOOH於不同浸泡時間下的結晶性變化;此外,藉由TEM來確認CQDs的平均粒徑以及複合結構間之界面;並以UPS探討氬電漿處理後材料與電解質介面能帶彎曲的程度。最終本研究成功建構出CQDs / Ar plasma treated FeOOH @WO3 NPs所形成的三元能帶結構,並證明其擁有優異的光電特性及產氫效率,而未來將持續發展相對應產氧技術並搭配本研究之產氫結構,更進一步結合儲氫科技建構出完整產氫鏈,以期達到永續發展之氫經濟社會。

    Photoelectrochemical water splitting is considered as a novel and promising strategy for hydrogen production. It can effectively convert solar energy into hydrogen storage. In this study, we utilized ß-FeOOH nanoparticles/carbon quantum dots to co-modified WO3 nanoplates and combined with Ar plasma to generate more oxygen vacancy. The detailed mechanisms of CQDs / Ar plasma treated FeOOH @WO3 NPs nanocomposites film is discussed through morphologies, surface chemical elemental composition, crystallinity, band structure, and optical characterizations. The morphologies and microstructures of obtained samples were investigated with TEM and SEM analysis. Uv-vis analysis was used to examine the optical absorption properties after surface modification. The changes of surface chemical states and oxygen vacancy ratio were analyzed by XPS. In addition, the degree of band bending of the interface between nanocomposites and electrolyte after Ar plasma treatment was investigated by UPS and UV-vis analysis. Through systematic analysis, we have a deeper understanding of the mechanism of the CQDs / Ar plasma treated FeOOH @WO3 NPs nanocomposites. Band structure is carried out to demonstrate the synergistic effect between ß-FeOOH and CQD, which is also believed to facilitate the transport of carriers between different materials. After co-modification and Ar plasma treatment, CQDs / Ar plasma treated FeOOH @WO3 NPs exhibited excellent performance for PEC water splitting. The photocurrent density can be significantly increased to 2.18 mA /cm2 at 1.23 V vs. RHE ,which is about 3.5 times higher than that of bare WO3 nanoplates. Furthermore, CQDs / Ar plasma treated FeOOH @WO3 NPs show the highest Electric double layer capacitance of 751 μF∙cm-2 and onset potential also shift cathodically by 257 mV. In the future, we will combine hydrogen storage technology to develop complete energy supply devices and continuous improve the efficiency of PEC system.

    摘要 I Extended Abstract II 誌謝 VII 目錄 VIII 圖目錄 XII 表目錄 XVI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 理論基礎與文獻回顧 5 2.1 產氫製程 5 2.2 光電化學水解產氫基礎理論 6 2.3 光電化學效率的計算 8 2.3.1 光電流密度( Photocurrent density ) 8 2.3.2 入射光子-電子轉換效率 ( Incident photon-to-electron conversion efficiency,IPCE ) 9 2.3.3 法拉第效率( Faradaic efficiency ) 9 2.4 光電化學產氫材料 10 2.5 WO3基本特性介紹 12 2.6 優化WO3光電特性之方法 14 2.6.1 表面修飾 ( Surface modification ) 14 2.6.2 結晶性 ( Crystallinity ) 15 2.6.3 電漿處理 ( Plasma treatment ) 17 2.6.4 載子注入效率 19 2.7 研究動機 21 第三章 儀器設備與實驗流程 22 3.1 研究流程圖 22 3.2 實驗藥品與材料 23 3.3.1 精密天秤 ( Precision Balances ) 24 3.3.2 數位型電磁加熱攪拌機 ( Heating Panel ) 24 3.3.3 旋轉塗佈機 ( Spin coater ) 24 3.3.4 超音波震盪機 ( Ultrasonic Cleaner ) 24 3.4 實驗步驟 24 3.4.1 基板的製備 ( Substrate ) 24 3.4.2 WO3奈米片的製備 ( Preparation of WO3 nanoplates ) 25 3.4.3 FeOOH @WO3 NPs 複合結構薄膜的製備 ( Preparation of FeOOH @WO3 NPs ) 25 3.4.4 氬氣電漿對FeOOH @WO3 NPs 複合結構薄膜的表面改質 ( Ar-plasma treated FeOOH @WO3 NPs ) 25 3.4.5 碳量子點溶液的製備 ( Preparation of Carbon quantum dots solution ) 26 3.4.6 CQDs / Ar plasma treated FeOOH @WO3 NPs複合結構薄膜的製備 26 3.5光電化學性質量測方法 30 3.5.1 光電化學產氫裝置架設 30 3.5.2 PEC系統的光電流量測 31 3.5.3 PEC系統的電化學阻抗分析 31 3.5.4 PEC系統的有效電化學活性表面積計算 ( ECSA ) 32 3.6 材料分析儀器 34 3.6.1 恆定電位儀 ( Potentiostat ) 34 3.6.2 太陽光模擬器 ( Solar simulator ) 34 3.6.3 光功率計和熱電堆感測器 ( Power meter & Thermopile sensor ) 35 3.6.4 高解析場發射掃描式電子顯微鏡 ( High Resolution Scanning Electron Microscope,HR-SEM ) 36 3.6.5 X光薄膜繞射儀 ( X-ray Diffractometer,XRD ) 36 3.6.6 X光光電子能譜儀 ( X-ray Photoelectron Spectroscopy ,XPS ) 37 3.6.7 反應式離子蝕刻機 ( Reaction Ion Etching,RIE ) 38 3.6.8 紫外線/可見光分光光譜儀 ( Ultraviolet/Visible Spectrophotometer ) 38 3.6.9 穿透式電子顯微鏡 ( Transmission Electron Microscope,TEM ) 39 3.6.10 紫外光電子能譜儀( Ultraviolet Photoelectron Spectroscopy ,UPS ) 40 第四章 結果與討論 41 4.1 CQDs / Ar plasma treated FeOOH @WO3 NPs複合結構之材料與光電特性分析 41 4.2 WO3奈米片 41 4.2.1 WO3奈米片形貌、成分及晶體結構分析 :SEM & EDS & XRD 41 4.2.2 WO3奈米片光電特性 :LSV 43 4.3 探討不同濃度FeOOH奈米顆粒修飾於WO3奈米片表面之影響 44 4.3.1 探討不同濃度FeOOH奈米顆粒修飾於WO3奈米片表面之材料分析 :SEM & UV-vis 44 4.3.2 探討不同濃度FeOOH奈米顆粒修飾於WO3奈米片表面之材料特性 : XPS 45 4.3.3 探討不同濃度FeOOH奈米顆粒修飾於WO3奈米片表面之光電特性 : LSV & EIS 49 4.4 探討FeOOH於不同浸泡時間下之結晶性變化 51 4.4.1 探討FeOOH於不同浸泡時間下結晶性變化之材料分析 :XRD & TEM 51 4.4.2 WO3奈米片於不同FeOOH前驅液浸泡時間下之光電特性 :LSV 54 4.5 FeOOH @WO3 NPs複合結構薄膜結合Ar plasma表面處理 55 4.5.1 FeOOH @WO3 NPs複合結構薄膜結合Ar plasma表面處理之材料分析:XPS&UPS 55 4.5.2 FeOOH @WO3 NPs複合結構薄膜結合Ar plasma表面處理之光電特性分析:LSV 57 4.6 以碳量子點結合Ar plasma treated FeOOH @WO3 NPs複合結構薄膜 58 4.6.1以碳量子點結合Ar plasma treated FeOOH @WO3 NPs複合結構薄膜之材料分析 :TEM 58 4.6.2以碳量子點結合Ar plasma treated FeOOH @WO3 NPs複合結構薄膜之光電特性分析 : LSV 59 4.7各參數複合結構薄膜之光電特性比較 :ECSA & LSV & OCP 60 4.8 CQDs / Ar plasma treated FeOOH @WO3 NPs 三元能帶結構之建立 :TEM & UPS 62 4.9 CQDs / Ar plasma treated FeOOH @WO3 NPs與WO3 NPs氫氣產量之比較 65 4.10 本研究與歷年文獻之比較 66 第五章 結論 68 第六章 未來展望 69 參考文獻 70

    [1] 北美智權報310期 氫能源專題;2022
    [2] 氫能委員會 氫氣市場成長預測;2021
    [3] 電子工程專輯 電源技術;2020
    [4] Carmo, M.; Fritz, D. L.; Mergel, J.; Stolten, D., A comprehensive review on PEM water electrolysis. International journal of hydrogen energy 2013, 38 (12), 4901-4934.
    [5] Cen, J.; Wu, Q.; Yan, D.; Zhang, W.; Zhao, Y.; Tong, X.; Liu, M.; Orlov, A., New aspects of improving the performance of WO 3 thin films for photoelectrochemical water splitting by tuning the ultrathin depletion region. RSC advances 2019, 9 (2), 899-905.
    [6] Joy, J.; Mathew, J.; George, S. C., Nanomaterials for photoelectrochemical water splitting–review. International Journal of hydrogen energy 2018, 43 (10), 4804-4817.
    [7] NIPPON.com氫氣革命 改變能源結構-氫能源的應用之路;2015
    [8] Fujishima, A.; Honda, K., Electrochemical photolysis of water at a semiconductor electrode. nature 1972, 238 (5358), 37-38.
    [9] Kim, J. H.; Lee, J. S., BiVO4-based heterostructured photocatalysts for solar water splitting: a review. Energy and Environment Focus 2014, 3 (4), 339-353.
    [10] Tamirat, A. G.; Rick, J.; Dubale, A. A.; Su, W.-N.; Hwang, B.-J., Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Nanoscale horizons 2016, 1 (4), 243-267.
    [11] Yang, W.; Prabhakar, R. R.; Tan, J.; Tilley, S. D.; Moon, J., Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chemical Society Reviews 2019, 48 (19), 4979-5015.
    [12] Xiao, Y.-H.; Zhang, W.-D., MoS2 quantum dots interspersed WO3 nanoplatelet arrays with enhanced photoelectrochemical activity. Electrochimica Acta 2017, 252, 416-423.
    [13] Zhou, T.; Chen, S.; Wang, J.; Zhang, Y.; Li, J.; Bai, J.; Zhou, B., Dramatically enhanced solar-driven water splitting of BiVO4 photoanode via strengthening hole transfer and light harvesting by co-modification of CQDs and ultrathin β-FeOOH layers. Chemical Engineering Journal 2021, 403, 126350.
    [14] Zou, X.; Zhang, Y., Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews 2015, 44 (15), 5148-5180.
    [15] Feng, X.; Chen, Y.; Qin, Z.; Wang, M.; Guo, L., Facile fabrication of sandwich structured WO3 nanoplate arrays for efficient photoelectrochemical water splitting. ACS applied materials & interfaces 2016, 8 (28), 18089-18096.
    [16] Liu, X.; Liu, Y.; Su, J.; Li, M.; Guo, L., Facile preparation of BiVO4 nanoparticle film by electrostatic spray pyrolysis for photoelectrochemical water splitting. international journal of hydrogen energy 2015, 40 (38), 12964-12972.
    [17] Abdi, F. F.; Savenije, T. J.; May, M. M.; Dam, B.; van de Krol, R., The origin of slow carrier transport in BiVO4 thin film photoanodes: a time-resolved microwave conductivity study. The Journal of Physical Chemistry Letters 2013, 4 (16), 2752-2757.
    [18] Lee, D. K.; Choi, K.-S., Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition. Nature Energy 2018, 3 (1), 53-60.
    [19] Zheng, G.; Wang, J.; Liu, H.; Murugadoss, V.; Zu, G.; Che, H.; Lai, C.; Li, H.; Ding, T.; Gao, Q., Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting. Nanoscale 2019, 11 (41), 18968-18994.
    [20] Chen, X.; Zhu, H. Y.; Zhao, J. C.; Zheng, Z. F.; Gao, X. P., Visible‐light‐driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports. Angewandte Chemie 2008, 120 (29), 5433-5436.
    [21] Hu, J.; Li, S.; Chu, J.; Niu, S.; Wang, J.; Du, Y.; Li, Z.; Han, X.; Xu, P., Understanding the phase-induced electrocatalytic oxygen evolution reaction activity on FeOOH nanostructures. ACS Catalysis 2019, 9 (12), 10705-10711.
    [22] McDonald, K. J.; Choi, K.-S., A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO 4 photoanode for solar water oxidation. Energy & Environmental Science 2012, 5 (9), 8553-8557.
    [23] Zhang, B.; Wang, L.; Zhang, Y.; Ding, Y.; Bi, Y., Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angewandte Chemie International Edition 2018, 57 (8), 2248-2252.
    [24] Sadakane, M.; Sasaki, K.; Kunioku, H.; Ohtani, B.; Abe, R.; Ueda, W., Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation. Journal of Materials Chemistry 2010, 20 (9), 1811-1818.
    [25] Xu, L.; Jiang, Q.; Xiao, Z.; Li, X.; Huo, J.; Wang, S.; Dai, L., Plasma‐engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angewandte Chemie 2016, 128 (17), 5363-5367.
    [26] Liu, Y.; Kong, L.; Guo, X.; Xu, J.; Shi, S.; Li, L., Surface oxygen vacancies on WO3 nanoplate arrays induced by Ar plasma treatment for efficient photoelectrochemical water oxidation. Journal of Physics and Chemistry of Solids 2021, 149, 109823.
    [27] Cui Xiaoli., Flat Band Potential of Semiconductor Electrodes. Chemistry, 2017, 80(12): 1160-1171, 1175.
    [28] Zhu, S.; Song, Y.; Wang, J.; Wan, H.; Zhang, Y.; Ning, Y.; Yang, B., Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state. Nano Today 2017, 13, 10-14.
    [29] Wang, J.; Zhou, T.; Zhang, Y.; Chen, S.; Bai, J.; Li, J.; Zhu, H.; Zhou, B., The design of high performance photoanode of CQDs/TiO2/WO3 based on DFT alignment of lattice parameter and energy band, and charge distribution. Journal of Colloid and Interface Science 2021, 600, 828-837.
    [30] Zhou, T.; Chen, S.; Li, L.; Wang, J.; Zhang, Y.; Li, J.; Bai, J.; Xia, L.; Xu, Q.; Rahim, M., Carbon quantum dots modified anatase/rutile TiO2 photoanode with dramatically enhanced photoelectrochemical performance. Applied Catalysis B: Environmental 2020, 269, 118776.
    [31] Bard, A.; Faulkner, L., 1980 Electrochemical Methods: Fundamentals and Applications. Wiley New York.
    [32] Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P.-L.; Gogotsi, Y.; Simon, P., Relation between the ion size and pore size for an electric double-layer capacitor. Journal of the American Chemical Society 2008, 130 (9), 2730-2731.
    [33] Han, Z.; Wang, M.; Chen, X.; Shen, S., CdSe-sensitized branched CdS hierarchical nanostructures for efficient photoelectrochemical solar hydrogen generation. Physical Chemistry Chemical Physics 2016, 18 (16), 11460-11466.
    [34] McCrory, C. C.; Jung, S.; Peters, J. C.; Jaramillo, T. F., Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. Journal of the American Chemical Society 2013, 135 (45), 16977-16987.
    [35] Mohanty, B.; Ghorbani-Asl, M.; Kretschmer, S.; Ghosh, A.; Guha, P.; Panda, S. K.; Jena, B.; Krasheninnikov, A. V.; Jena, B. K., MoS2 quantum dots as efficient catalyst materials for the oxygen evolution reaction. Acs Catalysis 2018, 8 (3), 1683-1689.
    [36] Zeng, Q.; Li, J.; Li, L.; Bai, J.; Xia, L.; Zhou, B., Synthesis of WO3/BiVO4 photoanode using a reaction of bismuth nitrate with peroxovanadate on WO3 film for efficient photoelectrocatalytic water splitting and organic pollutant degradation. Applied Catalysis B: Environmental 2017, 217, 21-29.
    [37] Liu, Y.; Cheng, H.; Lyu, M.; Fan, S.; Liu, Q.; Zhang, W.; Zhi, Y.; Wang, C.; Xiao, C.; Wei, S., Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. Journal of the American Chemical society 2014, 136 (44), 15670-15675.
    [38] Cheng, F.; Zhang, T.; Zhang, Y.; Du, J.; Han, X.; Chen, J., Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies. Angewandte Chemie International Edition 2013, 52 (9), 2474-2477.
    [39] Wang, S.; Chen, P.; Bai, Y.; Yun, J. H.; Liu, G.; Wang, L., New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar‐driven water splitting. Advanced Materials 2018, 30 (20), 1800486.
    [40] Yamashita, T.; Hayes, P., Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied surface science 2008, 254 (8), 2441-2449.
    [41] Yang, T.; Meng, L.; Han, S.; Hou, J.; Wang, S.; Wang, X., Simultaneous reductive and sorptive removal of Cr (VI) by activated carbon supported β-FeOOH. RSC advances 2017, 7 (55), 34687-34693.
    [42] Liu, R.; Wang, Y.; Liu, D.; Zou, Y.; Wang, S., Water‐plasma‐enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation. Advanced Materials 2017, 29 (30), 1701546.
    [43] Sun, Y.; Gao, S.; Lei, F.; Xie, Y., Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chemical Society Reviews 2015, 44 (3), 623-636.
    [44] Liu, R.; Wang, Y.; Liu, D.; Zou, Y.; Wang, S., Water‐plasma‐enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation. Advanced Materials 2017, 29 (30), 1701546.
    [45] Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.-T.; Zhong, J.; ang, Z., Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347 (6225), 970-974.
    [46] Zhu, Z.; Ma, J.; Wang, Z.; Mu, C.; Fan, Z.; Du, L.; Bai, Y.; Fan, L.; Yan, H.; Phillips, D. L., Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. Journal of the American Chemical Society 2014, 136 (10), 3760-3763.
    [47] Lv, X.; Xiao, X.; Cao, M.; Bu, Y.; Wang, C.; Wang, M.; Shen, Y., Efficient carbon dots/NiFe-layered double hydroxide/BiVO4 photoanodes for photoelectrochemical water splitting. Applied Surface Science 2018, 439, 1065-1071.
    [48] Sadhasivam, S.; Anbarasan, N.; Gunasekaran, A.; Mukilan, M.; Jeganathan, K., Bi2S3 entrenched BiVO4/WO3 multidimensional triadic photoanode for enhanced photoelectrochemical hydrogen evolution applications. International Journal of Hydrogen Energy 2022, 47 (32), 14528-14541.
    [49] Yuan, K.; Cao, Q.; Li, X.; Chen, H.-Y.; Deng, Y.; Wang, Y.-Y.; Luo, W.; Lu, H.-L.; Zhang, D. W., Synthesis of WO3@ ZnWO4@ ZnO-ZnO hierarchical nanocactus arrays for efficient photoelectrochemical water splitting. Nano Energy 2017, 41, 543-551.
    [50] Wei, P.; Lin, K.; Meng, D.; Xie, T.; Na, Y., Photoelectrochemical Performance for Water Oxidation Improved by Molecular Nickel Porphyrin‐Integrated WO3/TiO2 Photoanode. ChemSusChem 2018, 11 (11), 1746-1750.
    [51] Lin, H.-S.; Lin, L.-Y., Improving visible-light responses and electric conductivities by incorporating Sb2S3 and reduced graphene oxide in a WO3 nanoplate array for photoelectrochemical water oxidation. Electrochimica Acta 2017, 252, 235-244.
    [52] Cao, Y.; Xing, Z.; Wang, B.; Tang, W.; Wu, R.; Li, J.; Ma, M., Surface Engineering of WO3/BiVO4 to Boost Solar Water-Splitting. Catalysts 2020, 10 (5), 556.
    [53] Zhan, F.; Li, J.; Li, W.; Liu, Y.; Xie, R.; Yang, Y.; Li, Y.; Chen, Q., In situ formation of CuWO4/WO3 heterojunction plates array films with enhanced photoelectrochemical properties. international journal of hydrogen energy 2015, 40 (20), 6512-6520.
    [54] Li, Y.; Feng, J.; Li, H.; Wei, X.; Wang, R.; Zhou, A., Photoelectrochemical splitting of natural seawater with α-Fe2O3/WO3 nanorod arrays. International Journal of Hydrogen Energy 2016, 41 (7), 4096-4105.

    無法下載圖示 校內:2027-08-10公開
    校外:2027-08-10公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE