簡易檢索 / 詳目顯示

研究生: 簡廷安
Jain, Ting-An
論文名稱: 液相燒結及晶核-晶殼微結構控制對鈦酸鋇基高電容材料介電性質影響之研究
Effects of Liquid-Phase Sintering and Core-Shell Microstructure Control on the Dielectric Properties of BaTiO3-Based Ceramics for High Capacitance Application
指導教授: 方冠榮
Fung, Kuan-Zong
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 132
中文關鍵詞: 鈦酸鋇微結構介電性質積層陶瓷電容
外文關鍵詞: BaTiO3, Microstructure, Dielectric Properties, MLCC
相關次數: 點閱:107下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為因應現今電子產品輕薄短小之趨勢,積層陶瓷電容(MLCC)之薄層化技術及高介電常數材料為實現高電容化及小型化之主要研究方向。伴隨著介電層的薄層化使電場強度急遽增加,對於鈦酸鋇基陶瓷材料介電層微結構之品質要求愈來愈高。因此如何藉由提升微結構與介電性質相關性之瞭解,進而開發高電容及高可靠度MLCC之介電陶瓷材料為本研究之重點。
    本研究首先探討液相燒結控制對(Ba,Ca)(Ti,Zr)O3微結構及介電性質之影響,藉由改變其ABO3鈣鈦礦結構中之A/B計量比及所添加BaO-SiO2玻璃之粒徑,觀察晶體結構、微結構及介電性質之變化及其對產品可靠度之影響。當A/B計量比減少至0.9956時,發現第二相(Ba,Ca)6(Ti,Zr)17O40逐漸產生,其所造成與(Ba,Ca)(Ti,Zr)O3之共晶液相顯著地促進晶粒成長。同時,隨著A/B計量比降低使居里溫度往高溫移動,因而造成室溫介電常數之增加。在晶界上(Ba,Ca)6(Ti,Zr)17O40第二相缺陷之形成造成晶界上電場及應力之改變,這些隨A/B計量比降低所產生之晶界缺陷形成漏電流之管道,因而導致MLCC可靠度變差。此外,添加粒徑較微細BaO-SiO2玻璃之Ba(Ti,Zr)O3陶瓷呈現較均勻之組成分佈及較大之晶粒成長。當玻璃玻璃添加量固定而其粒徑由1200 nm減小至326 nm,隨著玻璃粒徑之減小會促進所添加Mn2+離子之溶入造成晶格體積膨脹,因此抑制正方相轉變為立方相使居里溫度提高。當玻璃粒徑再減小至185 nm,由於均勻晶粒結構之較低正方性,反而使得居里溫度往低溫陡降。本研究發現玻璃扮演的角色不僅只於燒結助劑,更與晶粒成長控制及添加物之傳輸分佈密切相關,並因此造成介電行為之顯著變化。提高玻璃相分佈之均勻性除可有效的提升陶瓷之緻密度之外,更可以極小化玻璃相之添加量,得以降低其所導致之副作用。
    第二部分在探討晶核-晶殼結構控制對BaTiO3介電性質之影響,藉由改變鈣含量及添加氧化物之粒徑,觀察其晶核-晶殼微結構變化,並探討其對於介電性質及可靠度的影響。伴隨著(Ba1-xCax)TiO3中鈣含量之增加,會使得晶格體積為之縮小,證明在本研究中較小半徑之Ca離子會佔據BaTiO3晶格中Ba之位置,因而抑制液相燒結及晶粒成長。由於(Ba0.98Ca0.02)TiO3陶瓷粉末呈現較低之正方性,因而在燒結過程中促進添加物之擴散,使得燒結後之晶粒結構大部分被較高正方性之鐵電晶域所佔據,致使其室溫介電常數較BaTiO3陶瓷為之提升約10%高達3009。隨著鈣含量之增加,由A-site陽離子改變所造成之應力變化會致使居里溫度點往高溫移動,有助於提高在高溫下電容之溫度穩定性。當BaTiO3之添加物粒徑由次微米級縮小至奈米級,晶粒間之摻雜物會有效地均勻分散,此時在添加物中之元素會與其BaTiO3之反應增加,進而使晶格體積增加。奈米添加物如MnO及Y2O3之添加不僅促進本身元素之擴散,還包括燒結助劑(Ba0.6Ca0.4)SiO3中之元素如Ca及Si等,可提升其分佈之均勻狀態並可促進其往晶粒之中心均勻地擴散。使燒結後之晶粒結構大部分被具有高正方性之鐵電晶域所佔據,因而得到較高之介電常數。此外,奈米級添加物之添加除可提高生胚薄帶中陶瓷及添加物顆粒之堆積緻密度,減少造成介電層中缺陷所導致短路之機會,更可促進添加物之成分在晶界中之分佈,以降低在晶界中添加物凝聚所造成漏電流路徑之可能性,因此會大幅度地提升MLCCs之良率及其可信賴性。

    High performance MLCCs need to possess a high intrinsic dielectric constant (K) and thinner dielectric layers as the market drives electronic devices towards miniaturization and multifunctionality. However, the applied electric field rises significantly with a reduction in dielectric thickness. Microstructures of thinner dielectric layers play a more important role in the development of MLCCs with high capacitance and high reliability.
    Effect of various A/B stoichimetry ratio and dimension of BaO-SiO2 glass particles on the microstructure and dielectric properties of BaTiO3 based materials were investigated. XRD results reveal that a second phase of Ba6Ti17O40 formed when the A/B ratio was lower than 0.9956. TEM results show that liquid eutectic BaTiO3-Ba6Ti17O40 affects the sintering behavior and enhances grain growth; the grain size was significantly influenced when the A/B ratio changed from 0.9936 to 0.9976. It was found that with decreasing A/B ratio, the maximum permittivity increased due to a larger grain size, and the Curie point shifted to a higher temperature, which resulted in higher permittivity at room temperature. The highly accelerated life test (HALT) shows that the reliability performance became worse with a decreasing A/B ratio due to the formation of the second phase Ba6Ti17O40 at the grain boundary.
    It is found that ceramics doped with finer BaO-SiO2 glass frit have a more homogeneous structure and the mean grain size decreases as the particle size of the glass frit increases. A finer and better spreading glass phase penetrates the BTZ ceramic interface more easily and enhances the grain growth. The extent of the Mn2+ incorporation in BTZ ceramic increases with decreasing glass particle size, from 1200 to 326 nm. The Curie temperature was also shifted accordingly. When the glass particle size is further reduced to 185 nm, the Curie temperature declines significantly due to a more homogeneous grain structure with lower tetragonality. The role of glass is not limited to its use as a sintering aid, but also extended to control the grain growth and dopant transportability, which modify the dielectric properties of ceramics.
    The effects of calcium content and nano-sized dopant on the core-shell microstructure and dielectric properties of BaTiO3 were investigated to develop high permittivity ceramic materials for novel X5R/X7R MLCCs. Calcined (Ba0.98Ca0.02)TiO3 powder has lower tetragonality and enhanced diffusion during sintering, thus forming the grain structure dominated by the ferroelectric domain. The Curie temperature rose when the calcium content was increased, which contributed to the capacitance variation at high temperature. The (Ba0.98Ca0.02)TiO3 exhibits around 10% higher permittivity as compared with BaTiO3, due to the dominate ferroelectric grain structure and higher Curie temperature. Predominately ferroelectric core grains were observed in the capacitor doped with nano-sized dopants, and these led to higher capacitance. Nano-sized dopant facilitates the good particle packing of green sheets and reduces defects in the dielectric layers which may lead to initial short circuits. Moreover, the uniform distribution of dopants achieved by adding nano-sized oxide suppresses the agglomeration of impurities in the grain boundaries and also improves the reliability of MLCCs. The reduction of the required amount and uniform distribution of additives using the nano-sized dopant is thus beneficial to the precise control of the core–shell structure for the development of novel X5R MLCCs.

    中文摘要 I 英文摘要 III 總目錄 V 表目錄 VIII 圖目錄 IX 重要名詞英漢對照及符號說明 XIII 第一章 緒論 1 1-1 前言 1 1-2 積層陶瓷電容器之發展現況 1 1-3 積層陶瓷電容器的發展趨勢 3 1-4 研究動機及目的 3 第二章 理論基礎與文獻回顧 5 2-1 鈦酸鋇介電材料 5 2-1-1 鈦酸鋇之晶體結構 5 2-1-2 鈦酸鋇之介電性質 9 2-1-3 A/B 計量比對鈦酸鋇性質的影響 12 2-1-4 添加物對鈦酸鋇性質的影響 14 2-1-5 孔隙及晶粒大小對鈦酸鋇性質的影響 18 2-2 介電理論 20 2-2-1 介電性質 20 2-2-2 極化機構 20 2-2-3 介電損失 24 2-2-4 擴散型相變 25 2-2-5 晶核-晶殼結構 27 2-3 燒結原理與晶粒成長 30 2-3-1 燒結理論 30 2-3-2 液相燒結原理 32 2-3-3 晶粒成長 33 第三章 實驗方法與步驟 35 3-1 實驗流程 35 3-2 試片製備 36 3-2-1 A/B計量比對(Ba0.95±xCa0.05)(Ti0.82Zr0.18)O3微結構及介電性質之影響 36 3-2-2 BaO-SiO2玻璃粒徑對Ba(Ti0.82Zr0.18)O3微結構及介電性質之影響 36 3-2-3 鈣含量對(Ba1-xCax)TiO3晶核-晶殼微結構及介電性質之影響 39 3-2-4 奈米氧化物添加對BaTiO3晶核-晶殼微結構及介電性質之影響 39 3-3 X光繞射分析 40 3-3-1 晶體結構分析及晶格常數測定 40 3-3-2 正方性(Tetragonality)測定 40 3-4 燒結密度及收縮率量測 41 3-5 SEM表面型態觀察 42 3-6 TEM微結構及晶相分析 42 3-7 電性量測分析 42 3-7-1 介電常數(Dielectric Constant)及介電損失量測 42 3-7-2 電容溫度特性量測 43 3-7-3 絕緣電阻(Insulation Resistance)測試 43 3-7-4 加速壽命測試(Highly Accelerated Life Test)測試 43 第四章 液相燒結控制對(Ba,Ca)(Ti,Zr)O3微結構及介電性質之影響 45 4-1 A/B計量比對(Ba0.95±xCa0.05)(Ti0.82Zr0.18)O3微結構及介電性質之影響 46 4-1-1 前言 46 4-1-2 晶體結構分析 46 4-1-3 微結構分析 50 4-1-4 介電特性分析及加速壽命測試 54 4-1-5 結論 59 4-2 BaO-SiO2玻璃粒徑對Ba(Ti0.82Zr0.18)O3微結構及介電性質之影響 60 4-2-1 前言 60 4-2-2 燒結密度、表面型態及收縮率分析 61 4-2-3 晶體結構分析 63 4-2-4 微結構分析 66 4-2-5 介電特性分析 73 4-2-6 結論 78 第五章 晶核-晶殼結構控制對BaTiO3介電性質之影響 79 5-1 鈣含量對(Ba1-xCax)TiO3晶核-晶殼微結構及介電性質之影響 80 5-1-1 前言 80 5-1-2 晶體結構分析 81 5-1-3 微結構分析 88 5-1-4 介電特性分析 93 5-1-5 結論 99 5-2 奈米氧化物添加對BaTiO3晶核-晶殼微結構及介電性質之影響 100 5-2-1 前言 100 5-2-2 晶體結構分析 101 5-2-3 微結構分析 103 5-2-4 介電特性分析 111 5-2-5 結論 115 第六章 總結論 116 參考文獻 119 自述 130

    [1] A. J. Moulson and J. M. Herbert, Electroceramics Materials, Properties, Applications, Chapman & Hall, London, 1990.
    [2] P. Hansen, D. Hennings and H. Schreinemacher, “High-K Dielectric Ceramics from Donor/Acceptor-codoped BCTZ,” J. Am. Ceram. Soc., 81 [5] 1369–1373 (1998).
    [3] D. H. Yoon and B. I. Lee, “BaTiO3 Properties and Powder Characteristics for Ceramic Capacitors,” J. Ceram. Proc. Res., 3 [2] 41–47 (2002).
    [4] C. Pithan, D. Hennings, and R. Waser, “Progress in the Synthesis of Nanocrystalline BaTiO3 Powders for MLCC,” Int. J. Appl. Ceram. Tech., 2 [1] 1–14 (2005).
    [5] U. Weber, G. Greuel, U. Boettger, S. Weber, D. Hennings and R. Waser, “Dielectric Properties of Ba(Zr,Ti)O3-based Ferroelectrics for Capacitor Applications,” J. Am. Ceram. Soc., 84, 759–766 (2001).
    [6] C. H. Wang, “Microstructure and Characteristics of Ba(Ti,Zr)O3 Ceramics with Addition of Glass Frit,” Jpn. J. Appl. Phys., 41, 5317–5322 (2002).
    [7] H. Kishi, Y. Mizuno and H. Chozono, “Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspectives,” Jpn. J. Appl. Phys., 42, 1–15 (2003).
    [8] Catalogs for Multilayer Ceramic Chip Capacitor, Kyocera Corporation, 2009.
    [9] D. Hennings, “Dielectric Materials for Sintering in Reducing Atmospheres,” J. Eur. Ceram. Soc., 21, 1637–1642 (2001).
    [10] Y. Sakabe, “Dielectric Materials for Base-metal Multilayer Ceramic Capacitor,” Ceramic Bull, 66 [9] 1338–1341(1987).
    [11] K. Morita, Y. Mizuno, H. Chazono, H. Kishi, G. Y. Yang, W. E. Liu, E. C. Dickey and C. A. Randall, “Electric Conduction of Thin-Layer Ni-Multilayer Ceramic Capacitors with Core-Shell Structure BaTiO3,” Jpn. J. Appl. Phys., 41, 6957–6961 (2002).
    [12] Y. Mizuno, T. Hagiwara and H. Kishi, “Microstructural Design of Dielectrics for Ni-MLCC with Ultra-Thin Active Layers,” J. Ceram. Soc. Japan., 115, 360–364 (2007).
    [13] R. Waser, T. Balatu and K. Härdtl, “DC Electrical Degradation of Perovskite-Type Titanates: I, Ceramics,” J. Am. Ceram. Soc., 73 [6] 1645–1653 (1990).
    [14] H. Chazono and H. Kishi, “DC-Electrical Degradation of the BT-Based Material for Multilayer Ceramic Capacitor with Ni Internal Electrode: Impedance Analysis and Microstructure,” Jpn. J. Appl. Phys., 40, 5624–5629 (2001).
    [15] G. Arlt, D. Hennings and G. de With, “Dielectric Properties of Fine-Grained Barium Titanate Ceramics,” J. Appl. Phys., 58, 1619–1625 (1985).
    [16] S. F. Wang and G. O. Dayton, “Dielectric Properties of Fine-Grained Barium Titanate Based X7R Materials,” J. Am. Ceram. Soc., 82 [10], 2677–2681 (1999).
    [17] S. W. Kwon and D. H. Yoon, “Effects of Heat Treatment and Particle Size on the Tetragonality of Nano-Sized Barium Titanate Powder,” Ceram. Int., 33, 1357–1362 (2007).
    [18] C. Pithan. D. Hennings and R. Waser, “Progress in the Synthesis of Nanocrystalline BaTiO3 Powders for MLCC,” Int. J. Appl. Ceram. Technol., 2 [1] 1–14 (2005).
    [19] D. H. Yoon, “Tetragonality of Barium Titanate Powder for a Ceramic Capacitor Application,” J. Ceram. Proc. Res., 7 [4] 343–354 (2006).
    [20] T. Hoshina, S. Wada, Y. Kuroiwa, and T. Tsurumi, “Composite Structure and Size Effect of Barium Titanate Nanoparticles,” Appl. Phys. Lett., 93, 192914 (2008).
    [21] T. Tsurumi, T. Hoshina, H. Takeda, Y. Mizuno and H. Chazono, “Size Effect of Barium Titanate and Computer-Aided Design of Multilayered Ceramic Capacitors,” IEEE Trans. Ultrason. Ferroelectrics Freq. Contr., 56 [8] 1513–1522 (2009).
    [22] R. C. Kell and N. J. Hellicar, “Structure Transitions in Barium Titanate Zirconate Transducer Materials,” Acustica, 6, 235–238 (1956).
    [23] P. Hansen, D. Hennings, H. Schreinemacher, “Dielectric Properties of Acceptor-Doped (Ba,Ca)(Ti,Zr)O3 Ceramics,” J. Electroceram., 2, 85–94 (1998).
    [24] W. D. Kingery, H. K. Brown and D. R. Uhlmann, “Introduction to Ceramics,” Academic Press, John Wiley & Sons, 8–10, 1975.
    [25] B. Jaffe, W. R. Cook and H. Jaffe, “Piezoelectric Ceramics,” Academic Press, London and New York, 53–60, 1971.
    [26] Y. M. Chiang, D. P. Bimie and W. D. Kingery, “Physical Ceramics: Principles for Ceramic Science and Engineering,” John Willey & Sons, New York, 42–46, 1997.
    [27] V. M. Goldschmidt, Skrifter Norske Videnskaps-Akad. Oslo, I. Mat.-Nat. Kl., 8, 1926.
    [28] O. Muller, R. Roy, The Major Ternary Structural Families, Springer-Verlag press, New York, 221, 1974.
    [29] G. Arlt and P. Sasko, “Domain Configuration and Equilibrium Size of Domain in BaTiO3 Ceramics,” J. Appl. Phys., 51, 4956–4960 (1980).
    [30] G. Arlt, “Twinning in Ferroelectric and Ferroelastic Ceramics: Stress Relief,” J. Mater. Sci., 25, 2655–2666 (1990).
    [31] D. E. Rase and R. Roy, “Phase Equilibria in the System BaO–TiO2,” J. Am. Ceram. Soc., 38 [3] 102–113 (1955).
    [32] K. W. Kirby and B. A. Wechsler, “Phase Relations in the Barium Titanate-titanium Oxide System,” J. Am. Ceram. Soc., 74 [8] 1841–1847 (1991).
    [33] H. Bryan and J. Thomson, “Temperature-Dependent Phase Boundaries for BaTiO4, Ba4Ti13O30 and Ba6Ti17O40,” J. Am. Ceram. Soc., 34 [19] 33–34 (1951).
    [34] O. Eibl, P. Pongratz and P. Skalicky, “Formation of (111) Twins in BaTiO3 Ceramics,” J. Am. Ceram. Soc., 70 [8] 195–197 (1987).
    [35] V. Krasevec, M. Drofenik and D. Kolar, ”Toptaxy between BaTiO3 and Ba6Ti17O40,” J. Am. Ceram. Soc., 70 [8] 193–195 (1987).
    [36] R. K. Sharma, N. H. Chan and D. M. Smyth, “Solubility of TiO2 in BaTiO3,” J. Am. Ceram. Soc., 64 [8] 448–451 (1981).
    [37] Y. H. Hu, M. P. Harmer and D. M. Smyth, “Solubility of BaO in BaTiO3,” J. Am. Ceram. Soc., 8 [7] 372–376 (1985).
    [38] F. Kulesar, “A Microstructure Study of Barium Titanate Ceramics,” J. Am. Ceram. Soc., 39 [13] 13–19 (1959).
    [39] D. Hennings, R. Janssen and P. J. Reynen, “Control of Liquid Enhanced Discontinuous Grain Growth in Barium Titanate,” J. Am. Ceram. Soc., 70 [1] 23–27 (1987).
    [40] J. S. Choi and H. G. Kim, “Influence of Stoichiometry and Impurity on the Sintering Behavior of Barium Titanate Ceramics,” J. Mat. Sci, 27, 1285–1290 (1992).
    [41] J. K. Lee and K. S. Hong, “Roles of Ba/Ti ratios in the Dielectric Properties of BaTiO3 Ceramics,” J. Am. Ceram. Soc., 84 [9] 2001–2006 (2001).
    [42] A. K. Maurice and R. C. Buchanan, “Preparation and Stoichiometry Effects on Microstructure and Properties of High Purity BaTiO3,” Ferroelectrics, 74 , 61–75 (1987).
    [43] Y. H. Han, J. B. Appleby, and D. M. Smyth, “Calcium as an Acceptor Impurity in BaTiO3,” J. Am. Ceram. Soc., 70 [2] 96–100 (1987).
    [44] D. F. K. Hennings and H. Schreinemacher, “Ca-Acceptors in Dielectric Ceramics Sintered in Reductive Atmospheres,” J. Eur. Ceram. Soc., 15, 795–800 (1995).
    [45] Z. Q. Zhuang, M. P. Harner and D. M. Smyth, “The Effect of Octahedrally Coordinated Calcium on the Ferroelectric Transition of BaTiO3,” Mat. Res. Bull., 22, 1329–1335 (1987).
    [46] V. S. Tiwari, D. Pandey and P. Groves, “The Influence of Powder Processing Technique on Chemical Homogeneity and the Diffused Phase Transition Behaviour of Ba0.9Ca0.1TiO3 Ceramics,” J . Phys. D: Appl. Phys., 22, 837–843 (1989).
    [47] T. Suzuki, M. Ueno, Y. Nishi and M. Fujimoto, “Dislocation Loop Formation in Nonstoichiometric (Ba,Ca)TiO3 and BaTiO3 Ceramics,” J. Am. Ceram. Soc., 84 [1] 200–206 (2001).
    [48] R. Varatharajana, S. B. Samantab, R. Jayavela, C. Subramaniana, A.V. Narlikarb and P. Ramasamy, “Ferroelectric Characterization Studies on Barium Calcium Titanate Single Crystals,” Mater. Chara., 45, 89–93 (2000).
    [49] S. S. Ryu, S. K. Lee and D. H. Yoon, “Synthesis of Fine Ca-Doped BaTiO3 Powders by Solid-State Reaction Method–Part I: Mechanical Activation of Starting Materials,” J. Electroceram., 18, 243–250 (2007).
    [50] L. Zhang, O. P. Thakur, A. Feteira, G. M. Keith, A. G. Mould, D. C. Sinclair, and A. R. West, “Comment on the Use of Calcium as a Dopant in X8R BaTiO3-Based Ceramics,” Appl. Phys. Lett., 90, 142914 (2007).
    [51] P. S. R. Krishna, D. Pandey, V. S. Tiwari, R Chakravarthy and B. A. Dasannacharya, “Effect of Powder Synthesis Procedure on Calcium Site Occupancies in Barium Calcium Titanate: A Rietveld Analysis,” Appl. Phys. Lett., 62, 231–233 (1993).
    [52] H. M. Chan, M. P. Harmer and D. M. Smyth, “Compensating Defects in Highly Donor-Doped BaTiO3,” J. Am. Ceram. Soc., 69, 507–510 (1986).
    [53] N. H. Chan and D. M. Smyth, “Defect Chemistry of Donor-Doped BaTiO3,” J. Am. Ceram. Soc., 67, 285–288 (1984).
    [54] T. Li, L. Li, J. Zhao and Z. Gui, “Modulation Effect of Mn2+ on Dielectric Properties of BaTiO3-Based X7R Materials,” Mater. Lett., 44, 1–5 (2000).
    [55] B. Tang, S. Zhang, X. Zhou and Y.Yuan, “Doping Effects of Mn2+ on the Dielectric Properties of Glass-Doped BaTiO3-Based X8R Materials,” J. Mater Sci: Mater Electron, 18, 541–545 (2007).
    [56] H. Kishi, N. Kohzu, Y. Iguchi, J. Sugino, M. Kato, H. Ohsato and T. Okuda, “Occupational Sites and Dielectric Properties of Rare-Earth and Mn Substituted BaTiO3,” J. Euro. Ceram. Soc., 21, 1643–1647 (2001).
    [57] K. Morita, Y. Mizuno, H. Chazono and H. Kishi, “Effect of Mn Addition on DC-electrical Degradation of Multilayer Ceramic Capacitor with Ni Internal Electrode,” Jpn. J. Appl. Phys., 41, 6957–6961 (2002).
    [58] Y. Nakano, A. Sato, A. Hitomi and T. Nomura, “Microstructure and Related Phenomena of Multilayer Ceramic Capacitors with Ni-electrode,” Ceram. Trans., 32, 119–128 (1993).
    [59] C. E. Lee, S. H. Kang, D. S. Sinn and H. I. Yoo, “Co-Doping Effect of Mn and Y on Charge and Mass Transport Properties of BaTiO3,” J. Electroceram., 13, 785–791 (2004).
    [60] Y. H. Song, J. H. Hwang and Y. H. Han, “Effects of Y2O3 on Temperature Stability of Acceptor-Doped BaTiO3,” Jpn. J. Appl. Phys., 44, 1310–1313 (2005).
    [61] H. Y. Lu and M. H. Lin, “Charge Compensation Mechanism in Yttria-Doped Barium Titanate,” Ceram. Int., 31, 989–997 (2005).
    [62] J. H. Kim, S. H. Yoon and Y. H. Han, “Effects of Y2O3 Addition on Electrical Conductivity and Dielectric Properties of Ba-excess BaTiO3,” J. Euro. Ceram. Soc., 27, 1113–1116 (2007).
    [63] J. S. Park and Y. H. Han, “Nano Size BaTiO3 Powder Coated with Silica,” Ceram. Int., 31, 777–782 (2005).
    [64] Z. Tian, X. Wang, L. Shu, T. Wang, T. H. Song, Z. Gui and L. Li, “Preparation of Nano BaTiO3-Based Ceramics for Multilayer Ceramic Capacitor Application by Chemical Coating Method,” J. Am. Ceram. Soc., 92 [4] 830–833 (2009).
    [65] W. H. Lee, T. Y. Tseng and D. F. K. Hennings, “Effect of Calcinations Temperature and A/B ratio on the Dielectric Properties of (Ba,Ca)(Ti,Zr,Mn)O3 for Multiplayer Ceramic Capacitors with Nickel Electrodes, ” J. Am. Ceram. Soc., 83 [6] 1402–1406 (2000).
    [66] S. Sumita and T. Nomura, “Effects of Calcination on Lifetime of BaTiO3-based Multilayer Ceramic Chip Capacitor with Nickel Electrodes,” Int. J. Soc. Mater. Eng. Resources, 5 [1] 91–104 (1997).
    [67] C. H. Wang and Long Wu, “Ba(Ti, Zr)O3 ceramics sintered with lead borate glass,” Jpn. J. Appl. Phys., 32, 3518–3525 (1993).
    [68] S. F. Wang, T. C. K. Yang, Y. R. Wang and Y. Kuromitsu, “Effect of Glass Composition on the Densification and Dielectric Properties of BaTiO3 Ceramics,” Ceram. Int., 27, 157–162 (2001).
    [69] D. F. K. Hennings, R. Janssen and P. J. L. Reynen, “Control of Liquid-Phase-Enhanced Discontinuous Grain Growth in Barium Titanate,” J. Am Ceram. Soc., 70, 23–27 (1987).
    [70] H. M. Al-Allak, T. V. Parry, G. J. Russell and J. Woods., “Effects of Aluminium on the Electrical and Mechanical Properties of PTCR BaTiO3 Ceramics as a Function of the Sintering Temperature,” J. Mater. Sci., 23, 1083–1089 (1988).
    [71] Y. Kuromitsu, S.F. Wang, S. Yoshikawa and R.E. Newnham, “Interaction between Barium Titanate and Binary Glasses,” J. Am Ceram. Soc., 77, 493–498 (1994).
    [72] M. A. Zubair and C. Leach, “The Influence of Cooling Rate and SiO2 Additions on the Grain Boundary Structure of Mn-doped PTC Thermistors,” J. Euro. Ceram. Soc., 28, 1845–1855 (2008).
    [73] G. Liu and R. D. Roseman, “Effect of BaO and SiO2 Addition on PTCR BaTiO3 Ceramics,” J. Mater. Sci., 34, 4439–4445 (1999).
    [74] H. I. Hsiang, C. S. Hsi, C. C. Huang and S. L. Fu, “Low Temperature Sintering and Dielectric Properties of BaTiO3 with Glass Addition,” Mater. Chem. Phys., 113, 658–663 (2009).
    [75] S. T. Bae, S. Lee, J. H. Kim, K. S. Hong, H. Shin and H. S. Jung, “Effect of Glass Composition on the Dielectric Properties of a Liquid-Phase-Sintered MgO-Doped BaTiO3,” J. Am Ceram. Soc., 91, 2205–2210 (2008).
    [76] H. P. Jeon, S. K. Lee, S. W. Kim and D. K. Choi, “Effects of BaO-B2O3-SiO2 Glass Additive on Densification and Dielectric Properties of BaTiO3 Ceramics,” Mater. Chem. Phys., 94, 185–189 (2005).
    [77] B. Zhang, X. Yao and L. Zhang, “Study on the Structure and Dielectric Properties of BaO-SiO2-B2O3 Glass-Doped (Ba,Sr)TiO3 Ceramics,” Ceram. Int., 30, 1767–1771 (2004).
    [78] T. A. Jain, C. C. Chen, and K. Z. Fung, “Effects of Bi4Ti3O12 Addition on the Microstructure and Dielectric Properties of Modified BaTiO3 under a Reducing Atmosphere,” J. Euro. Ceram. Soc., 29, 2595–2601 (2009).
    [79] T. A. Jain, C. C. Chen, and K. Z. Fung, “Effects of Bi4Ti3O12 Addition on the Microstructure and Dielectric Properties of Mn-Doped BaTiO3-Based X8R Ceramics,” J. Alloys Compd., 476, 414–419 (2009).
    [80] J. Y. Chen, W. Jin and Y. Yao, “Study of the Anomalous Grain Growth of BaTiO3 Ceramics,” Ferroelectrics, 142, 153–159 (1993).
    [81] D. Hennings, “Barium Titanate Based Ceramics Materials for Dielectric Use,” Int. J. High Tech. Ceram., 3, 91–111 (1987).
    [82] M. W. Barsoum, Fundamental of Ceramics, The McGraw-Hill Companies, Inc., 526, 1997.
    [83] J. S. Kim and S. J. Kang, “Formation of Core-Shell Structure in the BaTiO3-SrTiO3 System,” J. Am. Ceram. Soc., 82 [4] 1085–1088 (1999).
    [84] N. Setter and L. E.Cross, “The Role of B-Site Cation Disorder in Diffuse Phase Transition Behavior of Perovskite Ferroelectrics,” J. Appl. Phys., 51 [8] 4356–4360 (1980).
    [85] G. A. Smolenskii, A. I. Agranovskaya and V. A.Isupov, “New Ferroelectrics of Complex Compound,” Sov. Phys. Solid State., 1, 907–908 (1959).
    [86] D. Hennings and R. Rosenstein, “Temperature-Stable Dielectrics Based on Chemically Inhomogeneous BaTiO3,” J. Am. Ceram. Soc., 67 [4] 249–254 (1984).
    [87] H. Y. Lu, J. S. Bow and W. H. Deng, “Core-Shell Structure in ZrO2-Modified BaTiO3 Ceramics,” J. Am. Ceram. Soc., 73 [12] 3562–3568 (1990).
    [88] H. T. Martirena and J. C. Burfoot,” Grain-Size Effects on Properties of Some Ferroelectric Ceramics,” J. Phys., 7, 3182–3192 (1974).
    [89] W. R. Beussem, L. E Cross and A. K.Goswami, “Phenomenological Theory of High Permittivity in Fine-Grained Barium Titanate,” J. Am. Ceram. Soc., 49 [1] 33–36 (1966).
    [90] P. Murugaraj, T. N. Kutty and M. S.Rao, ”Diffuse Phase Transformation in Neodymium-Doped BaTiO3 Ceramics,” J. Mater. Sci., 21, 3521–3527 (1986).
    [91] L. Benguigui and K. Bethe, “Diffused Phase Transition in BaxSr1-xTiO3 Single Crystal,” J. Appl. Phys., 47 [7] 2787–2791 (1976).
    [92] D. Bard, E. Barbulescu and A. Barbulescu, “Diffuse Phase Transitions and Ferroelectric-Paraelectric Diagram for the BaTiO3-SrTiO3 system,” Phys. Stat. Sol., 74, 79–83 (1982).
    [93] S. Zhang, S. Wang, X. Zhou, B. Li and Z. Chen, “Influence of 3d-Elements on Dielectric Properties of BaTiO3 Ceramics,” J. Mater. Sci.: Mater. Electro., 16, 669–672 (2005).
    [94] G. Liu, X. Wang, Y. Lin, L. T. Li and C. W. Nan, “Growth kinetics of Core-Shell-Structured Grains and Dielectric Constant in Rare-Earth Doped BaTiO3 Ceramics,” J. Appl. Phys., 98, 044105 (2005).
    [95] H. Saito, H. Chazono, H. Kishi and N. Yamaoka, “X7R Multilayer Ceramic Capacitors with Nickel Electrodes,” Jpn. J. Appl. Phys., 30, 2307–2310 (1991).
    [96] T. R. Armstrong, L. E. Morgens, A. K.Maurice and R. C. Buchanan, “Effects of Zirconia on Microstructure and Dielectric Properties of Barium Titanate Ceramics,” J. Am. Ceram. Soc., 72 [4] 605–611 (1989).
    [97] H. Chazono and H. Kishi, “Sintering Characteristics in BaTiO3-Nb2O5-Co3O4 Ternary System: I, Electrical Properties and Microstructure,” J. Am. Ceram. Soc., 82 [10] 2689–2697 (1999).
    [98] C. Metzmacher and K. Albertsen, “Microstructural Investigations of Barium Titanate-Based Material for Base Metal Electrode Ceramic Multilayer Capacitor,” J. Am. Ceram. Soc., 84 [4] 821–826 (2001).
    [99] C. S. Chen, C. C. Chou and I. N. Lin, “Microstructure of X7R Type Base-Metal-Electroded BaTiO3 Capacitor Materials Co-Doped with MgO/Y2O3 Additives,” J. Electroceram., 13, 567–571 (2004).
    [100] T. R. Armstrong and R. C. Buchanan, “Influence of Core Shell Grains on the Internal Stress State and Permittivity Response of Zirconia-Modified Barium Titanate,” J. Am. Ceram. Soc., 73 [5] 1268–1273 (1990).
    [101] T. Takeuchi, K. Ado, T. Asai, H. Kageyama, Y. Saito, C. Masquelier and O. Nakamura, “Thickness of Cubic Surface Phase on Barium Titanate Single-Crystalline Grains,” J. Am. Ceram. Soc., 77, 1665–1668 (1994).
    [102] K. Yasukawa, M. Nishimura, Y. Nishihata and J. Mizuki, “Core–Shell Structure Analysis of BaTiO3 Ceramics by Synchrotron X-Ray Diffraction,” J. Am. Ceram. Soc., 90 [4] 1107–1111 (2007).
    [103] T. Hiramatsu, T. Tamura, N. Wada, H. Tamura and Y. Sakabe, “Effects of Grain Boundary on the Dielectric Properties in Fine-Grained BaTiO3 Ceramics,” Mater. Sci. Eng. B, 120, 55–58 (2005).
    [104] Y. Mizuno, T. Hagiwara, H. Chazono and H. Kishi, “Effect of Milling Process on Core-Shell Microstructure and Electrical Properties for BaTiO3-Based Ni-MLCC,” J. Euro. Ceram. Soc., 21, 1649–1652 (2001).
    [105] Y. Iwahori, H. Tanaka, M. Takata, Y. Terado, C. Moriyoshi and Y. Kuroiwa, “Core/Shell Structure of Ferroelectric (Ba0.94Ca0.06)TiO3 Grains,” J. Kor. Phy. Soc., 55 [2] 830–834 (2009).
    [106] Y. Sakabe, N. Wada, T. Hiramatsu and T. Tonogaki, “Dielectric Properties of Fine-Grained BaTiO3 Ceramics Doped with CaO,” Jpn. J. Appl. Phys., 41, 6922–6925 (2002).
    [107] N. Wada , T. Hiramatsu, T. Tamura and Y. Sakabe, “Investigation of Grain Boundaries Influence on Dielectric Properties in Fine-Grained BaTiO3 Ceramics without the Core–Shell structure,” Ceram. Int., 34, 933–937 (2008).
    [108] R. L. Coble, “Sintering Crystalline Solids. I: Intermediate and Final State Diffusion Models,” J. Appl. Phys., 32, 787 (1961).
    [109] C. Greskovich and J. H. Rosolowski, “Sintering of Covalent Solids,” J. Am. Ceram. Soc., 59, 336 (1976).
    [110] D. W. Budworth, “Theory of Pore Closure during Sintering,” Trans. Brit. Ceram. Soc., 69, 29 (1970).
    [111] C. Herring, “Effect of Change of Scale on Sintering Phenomena,” J. Appl. Phys. 21, 301(1950).
    [112] F. F. Lang, “Sinterability of Agglomerate Powders,” J. Am. Ceram. Soc., 67, 83 (1984).
    [113] R. M. German, Sintering Theory and Practice, John Wiley & Sons, Inc., 225, 1996.
    [114] T. J. B. Holland and S. A. T. Redfern, “Unit Cell Refinement from Powder Diffraction Data; the Use of Regression Diagnostics,” Mineralogical Magazine, 61, 65–77 (1997).
    [115] S. T. Bae, S. Lee, J. H. Kim, K. S. Hong, H. Shin, and H. S. Jung, “Effect of Glass Composition on the Dielectric Properties of a Liquid-Phase-Sintered MgO-Doped BaTiO3,” J. Am Ceram. Soc., 91 [7] 2205–2210 (2008).
    [116] D. E. McCauley, M. S. H. Chu and M. H. Megherhi, “PO2 Dependence of the Diffuse-Phase Transition in Base Metal Capacitor Dielectrics,” J. Am. Ceram. Soc., 89 [1] 193–201 (2006).
    [117] R. Confer, J. Canner and T. Trostle, “Use of Highly Accelerate Life Test (HALT) to Determine Reliability of Multilayer Ceramic Capacitors”, Materials Research Laboratory, 320–322 ( 1991)
    [118] R. Munkoti and P. Dhar, “Highly Accelerated Life Testing (HALT) for MultilayerCeramic Capacitor Qualification”, IEEE/Transactions on Component, Hybrids and Manufacturing Technology, 11 [4 ] 342–345 (1988).
    [119] W. Weibull, “A Statistical Distribution Function of Wide Applicability,” J. Appl. Mech., 18, 293–297 (1951).
    [120] M. P. McNeal, S.J. Jang and R. E. Newnham, “Particle size Dependent Frequency Dielectric Properties of Barium Titanate,” J. Appl. Phys., 83, 837–840 (1996).
    [121] L. Zhang, W. L. Zhong, C. L. Wang, Y. P. Peng and Y. G. Wang, “Size Dependence of Dielectric Properties and Structural Metastability in Ferroelectrics,” Eur. Phys. J. B, 11, 565–573 (1999).
    [122] X. Xu and G. E. Hilmas, “Effects of Ba6Ti17O40 on the Dielectric Properties of Nb-Doped BaTiO3 Ceramics,” J. Am. Ceram. Soc., 89 [8] 2496–2501 (2006).
    [123] A. J. Williams, B. M. Sobotka and J. P. Attfield, “Charge Disorder Effects in 3d Transition Metal Oxide Perovskites,” J. Solid State Chem., 173, 456–461 (2003).
    [124] T. A. Jain, K. Z. Fung and J. Chan, “Effect of the A/B Ratio on the Microstructures and Electrical Properties of (Ba0.95±xCa0.05)(Ti0.82Zr0.18)O3 for Multilayer Ceramic Capacitors with Nickel Electrodes,” J. Alloys Compd., 468, 370–374 (2009).
    [125] H. Kobayashi, T. Uchida, S. Sato and T. Nomura, Dielectric Ceramic Composition and Electronic Device, TDK Corporation, United States Patent 6764976, 2004.

    下載圖示 校內:2015-05-27公開
    校外:2020-05-30公開
    QR CODE