簡易檢索 / 詳目顯示

研究生: 蔡天齊
Tsai, Tien-Chi
論文名稱: 基於顯式動力學探討304不鏽鋼之超音波輔助車削力學有限元素模擬
Explicit Dynamics-Based Finite Element Simulation of Ultrasonic-Assisted Turning (UAT) Cutting Mechanics for 304 Stainless Steel
指導教授: 陳重德
Chen, Chung-De
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 84
中文關鍵詞: 超音波輔助振動車削304不鏽鋼有限元素分析橢圓振動加工殘留應力切削性能
外文關鍵詞: Ultrasonic Assisted Vibration Turning, 304 Stainless Steel, Finite Element Analysis, Residual Stress, Machinability
相關次數: 點閱:40下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討超音波輔助車削技術(Ultrasonic Assisted Turning, UAT)在加工304不鏽鋼時的力學行為,並利用顯式動力學有限元素分析方法進行模擬研究。由於其高硬度和韌性,304不鏽鋼在切削時需要較大的切削力,且刀具容易磨損。此外304不鏽鋼的低熱導率使得切削過程中熱量不易散發,降低了刀具壽命。雖然已有提出多種方法(如切削液的添加)改善上述問題,但會造成環境汙染及切削成本上升,因此仍希望有更佳適合的加工技術,來降低對環境之汙染與加工成本。根據相關文獻回顧,許多研究均指出超音波輔助車削技術能有效降低切削力、改善表面品質和減少工具磨損。而有限元素分析被用來模擬不同切削參數對切削力、剪切角等的影響,從而減少實驗成本和時間。
    本研究目的在於以有限元素套裝軟體ANSYS建立有限元素模型,利用顯式動力學探討傳統切削與超音波輔助車削之間的差異,包含切削機制,切削力,剪切角及表面殘留應力等,並分析橢圓振動和摩擦係數對切削性能的影響。在研究方法部分,詳細介紹超音波輔助切削的原理和運動學分析,並描述超音波刀把的設計與增幅桿的設計與二維正交切削模型的力學分析,並使用Johnson-Cook材料本構方程式模擬材料的塑性變形行為。
    本研究亦進行網格收斂性分析以確保模擬結果的準確性。分析結果顯示,超音波輔助車削能顯著降低切削力,尤其在低切削速度下效果更為明顯。同時,超音波輔助車削還能增加剪切角,減少切屑厚度,有助於切屑的排除和降低切削溫度。
    最後,本研究討論了摩擦係數對切削性能的影響。結果顯示,降低摩擦係數能顯著減少切削力並增加剪切角,並探討了橢圓振動的優勢,指出調整垂直振幅大小可提升剪切角,但對減少切削力方面並無顯著提升,然而可經由相位角的調整改變其運動軌跡,有助於降低切削力,但會因此犧牲表面精度。而對於殘留應力的分析,橢圓振動切削能顯著的降低表面殘留拉應力,使工件在加工後具有更好的壽命與表面精度。
    本研究以ANSYS顯示動力學模組開發一個有限元素模型,此模型對於切削力學、切削性能分析具有一定之可靠度,未來可基於此模型進行更深入的探討如三維超音波輔助切削、摩擦熱與熱傳導效應耦合之研究以及進一步的實驗驗證與模型修正。

    This study investigates the dynamic behavior of 304 stainless steel during Ultrasonic Assisted Turning (UAT) using explicit dynamic finite element analysis with ANSYS software. Due to the high hardness, toughness, and low thermal conductivity of 304 stainless steel, conventional cutting methods result in significant cutting forces, tool wear, and high temperature issues. UAT, however, has shown to effectively reduce cutting forces, improve surface quality, decrease tool wear and reduce the use of cutting fluids.
    In this study, a finite element model to compare conventional turning with UAT was established. The simulation was focused on cutting mechanisms, cutting forces, shear angles, and surface residual stresses. The Johnson-Cook material model was utilized to address the plastic deformation. A mesh convergence study was conducted to ensure the simulation accuracy.
    According to the simulation results, it is found that UAT significantly reduces cutting forces at low speeds, increases shear angles. It is also observed that lower friction coefficients also reduce cutting forces and increase shear angles. The use of elliptical vibration can improve shear angles but has a slight impact on cutting force reduction and may affect surface precision. It notably reduces surface residual tensile stress, enhancing workpiece lifespan. For future studies, this work can be extended to three-dimensional UAT and further explore frictional heat and thermal conductivity effects.

    摘要 I Extended Abstract III 誌謝 XI 目錄 XII 表目錄 XIV 圖目錄 XV 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究目的 6 1.4 本文架構 7 第2章 超音波輔助切削簡介與超音波刀把簡介 8 2.1 超音波輔助切削原理 8 2.2 超音波輔助切削過程的運動學分析 8 2.3 超音波輔助切削分類 11 2.4 超音波刀把設計 13 2.4.1 超音波刀把主要元件 13 2.4.2 增幅桿設計 13 第3章 超音波輔助切削力學分析及有限元素模型建立 15 3.1 二維正交切削 15 3.2 正交切削的力學分析 16 3.3 材料的本構方程式 19 3.4 材料失效準則 21 3.5 Ansys 模型建立 21 3.5.1 顯式動力學(Explicit dynamic ) 21 3.5.2 幾何模型建立 22 3.5.3 網格收斂性分析 25 3.5.4 ANSYS設定 27 第4章 分析結果與討論 31 4.1 驗證模型正確性 31 4.1.1. 傳統切削模型驗證 31 4.1.2. 超音波輔助振動切削模型驗證 35 4.2 切削力探討 43 4.3 剪切角探討 45 4.4 橢圓振動對切削性能之影響 47 4.4.1. 垂直切削速度方向振幅對切削性能之影響 47 4.4.2. 相位角對切削性能之影響 49 4.5 摩擦係數對切削性能之影響 52 4.6 超音波振動對工件表面殘留應力之探討 54 第5章 結論與未來展望 59 結論 59 未來展望 61 參考文獻 62

    1. Zou, Z.,Research on inverse identification of johnson-cook constitutive parameters for turning 304 stainless steel based on coupling, Journal of Materials Research and Technology, 23: p. 2244-2262, 2023.
    2. Kumar, A., et al.,A review on machining performance of AISI 304 steel, Materials Today: Proceedings, 56: p. 2945-2951, 2022.
    3. Ali, M.A.M., et al.,Roles of new bio-based nanolubricants towards eco-friendly and improved machinability of Inconel 718 alloys, Tribology International, 144: p. 106106, 2020.
    4. Binali, R., et al.,Different Aspects of Machinability in Turning of AISI 304 Stainless Steel: A Sustainable Approach with MQL Technology, Metals, 13(6): p. 1088, 2023.
    5. Davim, J.P., et al.,Turning of Brasses Using Minimum Quantity of Lubricant (MQL) and Flooded Lubricant Conditions, Materials and Manufacturing Processes, 22(1): p. 45-50, 2007.
    6. Sreejith, P.S., et al.,Dry machining: Machining of the future, Materials Processing Technology, 101: p. 287-291, 1999.
    7. Thakur, D.G., et al.,Influence of minimum quantity lubrication on the high speed turning of aerospace material superalloy Inconel 718, Machining and Machinability of Materials, 13: p. 203-214, 2013.
    8. Adler, D.P., et al.,Examining the Role of Cutting Fluids in Machining and Efforts to Address Associated Environmental/Health Concerns, Machining Science and Technology, 10(1): p. 23-58, 2006.
    9. Xu, Y., et al.,Theoretical and experimental investigations of tool wear in ultrasonic vibration–assisted turning of 304 austenitic stainless steel, The International Journal of Advanced Manufacturing Technology, 127(7-8): p. 3157-3181, 2023.
    10. Zhang, C., et al.,An Investigation of the High-Frequency Ultrasonic Vibration-Assisted Cutting of Steel Optical Moulds, Micromachines (Basel), 12(4): p. 460, 2021.
    11. Liu, G., et al.,An Experimental Study on Ultrasonic Vibration-Assisted Turning of Aluminum Alloy 6061 with Vegetable Oil-Based Nanofluid Minimum Quantity Lubrication, Lubricants, 11(11): p. 470, 2023.
    12. Rinck, P.M., et al.,Modeling of cutting forces in 1-D and 2-D ultrasonic vibration-assisted milling of Ti-6Al-4V, The International Journal of Advanced Manufacturing Technology, 119(3-4): p. 1807-1819, 2021.
    13. Paktinat, H., et al.,Experiments and Finite Element Simulation of Ultrasonic Assisted Drilling, Journal of Manufacturing Science and Engineering, 140(10): p. 101002-101001, 2018.
    14. Luo, H., et al.,Effect of cutting and vibration parameters on the cutting performance of 7075-T651 aluminum alloy by ultrasonic vibration, The International Journal of Advanced Manufacturing Technology, 107(1-2): p. 371-384, 2020.
    15. Puga, et al.,Ultrasonic Assisted Turning of Al alloys: Influence of Material Processing to Improve Surface Roughness, Surfaces, 2(2): p. 326-335, 2019.
    16. Xiao, M., et al.,Analysis of chatter suppression in vibration cutting, International Journal of Machine Tools & Manufacture, 42: p. 1677–1685, 2002.
    17. Zou, P., et al.,Experimental Investigation of Ultrasonic Vibration Assisted Turning of 304 Austenitic Stainless Steel, Shock and Vibration, 2015: p. 1-19, 2015.
    18. Kisswani, C.A.L.,Dynamic Characteristics of a Tool Holder Shank in Lathe, University of Karlskrona/Ronneby Mechanical Engineering,2000.
    19. Tong, J., et al.,Surface microstructure of titanium alloy thin-walled parts at ultrasonic vibration-assisted milling, The International Journal of Advanced Manufacturing Technology, 101(1-4): p. 1007-1021, 2018.
    20. Lotfi, M., et al.,Finite element simulation of ultrasonic-assisted machining: a review, The International Journal of Advanced Manufacturing Technology, 116(9-10): p. 2777-2796, 2021.
    21. Singh, M., et al.,Multiple response optimization of ultrasonic assisted electric discharge Machining of Nimonic 75: A Taguchi-Grey relational analysis approach, Materials Today: Proceedings, 45: p. 4731-4736, 2021.
    22. Kang, D., et al.,A lens ultrasonic vibration-assisted laser machining system for laser polishing and laser drilling of 304 stainless steel, Optics & Laser Technology, 144: p. 107419, 2021.
    23. Gorunov, A.I.,Additive manufacturing of Ti6Al4V parts using ultrasonic assisted direct energy deposition, Journal of Manufacturing Processes, 59: p. 545-556, 2020.
    24. Yassin, M.M.,Design of Ultrasonic Processing Device for Aluminum Surfaces, the thesis requirement for the degree of Master of Applied Science, University of Waterloo Mechanical Engineering, 2018.
    25. Shaw, M.C.,Metal Cutting Principles 2nd Edition, Oxford University Press: p. 16-18, 2005.
    26. Airao, J., et al.,Analytical Modeling of Machining Forces and Friction Characteristics in Ultrasonic-Assisted Turning Process, Journal of Manufacturing Science and Engineering, 144(2): p. 021014-021011, 2022.
    27. Verma, G.C.,Modeling of static machining force in axial ultrasonic-vibration assisted milling considering acoustic softening, International Journal of Mechanical Sciences, 136: p. 1-16, 2018.
    28. Huo, B., et al.,Effect of double-excitation ultrasonic elliptical vibration turning trajectory on surface morphology, The International Journal of Advanced Manufacturing Technology, 113(5-6): p. 1401-1414, 2021.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE