簡易檢索 / 詳目顯示

研究生: 李根榮
Li, Gen-Rong
論文名稱: 基於波傳理論之滑樁預警架構發展
Development of a Warning Framework for Pile Running Based on Wave Propagation Theory
指導教授: 張文忠
Chang, Wen-Jong
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 123
中文關鍵詞: 滑樁預警打樁動態模擬應力波傳靜態樁載重試驗模擬數值模擬
外文關鍵詞: pile running warning, dynamic analysis, pile-driving, stress wave propagation, static pile load test simulation, numerical simulation
相關次數: 點閱:35下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過數值模擬並搭配波傳理論探討基樁打擊時應力波在樁間的傳遞情況,同時連結土壤阻抗對樁頭質點速度的影響,以現場監測技術和樁體與土層互制嘗試建立實務可行之滑樁預警架構。研究以數值模型並視樁為一彈性體,使用不同勁度的土壤藉由控制不同的樁土界面強度及勁度,來模擬高樁周阻抗及顯著樁尖位移等情況下的波傳反應,對應現地動態打樁分析儀(Pile Dynamic Analyzer, PDA)之感測器所量測的位置,觀察數值模型受力及質點速度歷時的波型變化。模擬結果顯示樁底土壤勁度上升時,回彈波的相角變化並不顯著,但樁周阻抗上升時,在回彈波到達之前,受力與質點速度波型隨時間分離的程度愈大,且回彈波的振幅會因土壤阻抗下降而上升,因此透過量化兩波型分離程度,建立一樁周阻抗評估指標,並將不同種類土壤與分層納入考量,結合樁載重試驗模擬求得之樁極限承載力,可驗證評估指標之合理性,打樁數值模型結果顯示,在不同樁土界面強度及勁度的情況下,模型樁評估指標與極限承載力近乎呈線性相關,藉以提出滑樁預警之架構。

    This study utilizes numerical simulation and wave propagation theory to observe the stress wave propagation behavior during pile driving, while considering the influence of pile head particle velocity due to soil resistance. Attempt to establish a warning framework for pile running by techniques of field monitoring and considering the pile-soil interaction. The research employs numerical models treating the pile as an elastic body and varying the soil stiffness and strength to simulate wave propagation behavior under high pile-soil resistance and significant pile tip displacement conditions. To observe the changes in force and particle velocity waveforms over time in numerical models, corresponding to the positions measured by sensors of the Pile Dynamic Analyzer (PDA) during pile driving. The simulation results indicate that when the stiffness of the soil under the pile tip increases, there is no significant change in the phase angle of the rebound wave. However, with increasing pile-soil resistance, the separation between the force and particle velocity waveforms before the arrival of the pile tip rebound wave becomes more pronounced. On the other hand, the amplitude of the pile tip rebound wave increases due to the decreasing soil resistance. To establish an evaluation Index for pile-soil resistance by quantifying the waveform separation, and taking different types of soil and stratification into consideration. Using the results of ultimate bearing capacity from pile loading test simulation to validate the rationality of this index. The analysis results show that the evaluation index is nearly linearly correlated with the ultimate bearing capacity of pile under different pile-soil interface strengths and stiffness, providing a framework for pile running warning.

    摘要 I ABSTRACT II 誌謝 IX 目錄 X 表目錄 XIII 圖目錄 XV 第一章 緒論 1 1-1 研究背景與目的 1 1-2 研究方法與流程 2 1-3 論文架構 4 第二章 文獻回顧 5 2-1 滑樁機制 5 2-2 波傳理論 6 2-2-1 一維波傳方程式 6 2-2-2 應力區間的質點速度 7 2-2-3 應力波端點的反射行為 8 2-3 打擊式基樁波傳控制方程式 11 2-4 動態量測樁承載力 12 2-5 打樁動態分析 17 2-6 土壤阻抗對量測波型訊號影響 19 第三章 有限元素分析方法及PLAXIS程式 21 3-1 PLAXIS程式簡介 21 3-1-1 分析軟體-PLAXIS 21 3-1-2 PLAXIS基本操作流程 21 3-2 PLAXIS材料模型 23 3-2-1 硬化土壤模型(Hardening Soil Model, HS model) 23 3-2-2 小應變硬化土壤模型(Hardening Soil Model with Small-Strain Stiffness, HSS model) 27 3-2-3 材料模型之排水類型 30 3-3 PLAXIS界面元素(Interface Element) 32 3-4 PLAXIS有限元素運算原理 34 3-4-1 靜力運算原理 34 3-4-2 動力運算原理 36 3-4-3 動力邊界條件 39 第四章 滑樁風險理論架構建立 40 4-1 現地打樁模型建立與流程 40 4-1-1 模型尺寸及幾何 40 4-1-2 材料參數 43 4-1-3 打擊波型(Impact waveform) 51 4-1-4 模擬流程 53 4-2 模擬結果比對 54 4-2-1 打擊階梯波型 54 4-2-2 高樁周土壤阻抗 57 4-2-3 顯著樁尖位移 58 4-3 模擬訊號結果 60 4-3-1 回彈波相角影響 60 4-3-2 振幅變化效益 63 4-3-3 典型打擊波型 64 4-3-4 樁周評估指標建立 69 4-3-5 土壤阻抗對Gap Forece的影響 70 4-3-6 土壤分層效應 72 4-3-7 打擊力大小影響 78 4-3-8 打擊波歷時影響 81 4-4 樁載重模擬試驗 87 4-4-1 樁載重試驗模擬流程與極限承載力判釋 87 4-4-2 樁載重試驗模擬結果 90 4-4-3 極限承載力與Gap Force關係 96 第五章 打擊樁訊號應用 102 5-1 滑樁風險評估架構流程 102 5-2 縮尺打擊樁物理模型規劃 106 5-2-1 實驗概述 106 5-2-2 縮尺試驗數值模型建立 107 5-2-3 模擬階段及打擊波型 109 5-2-4 縮尺試驗模擬結果 111 5-2-5 縮尺打擊樁物理模型初期規劃 115 第六章 結論與建議 119 6-1 結論 119 6-2 建議 120 參考文獻 121

    1. Bowles, J. E. (1988). Foundation analysis and design. New York, McGraw-Hill Publishing.
    2. Butler, H. D. and Hoy, H. E. (1977) Users manual for the texas quick-load method for foundation load testing. Federal Highway Adminstration, Office of Development, Washington.
    3. Byrne, B. (2011). Foundation Design for Offshore Wind Turbines. Géotechnique Lecture, University of Oxford, 5.
    4. Das, B. M. (2016). Principles of Geotechnical Engineering(8th ed.). Stamford, Cengage Learning Publishing.
    5. Davisson, M. T. (1972). High Capacity Piles. In Proceedings of the Lecture Series on Innovations in Foundation Construction., ASCE, Illinois Section, Chicago, 81-112.
    6. De Beer, E. E. (1967). Proefondervindlijke bijdrage tot de studie van het grensdraag vermogen van zand onder funderingen op staal. Tijdshift der Openbar Verken van Belgie, 6.
    7. Fuller, R. M. and Hoy, H. E. (1970). Pile load tests including quick-load test method, conventional methods and interpretations, HRB, 333.
    8. Goble, G. G. and Rausche, F. (1980). Pile drivability predictions by CAPWAP. Numerical methods in offshore piling. Thomas Telford Publishing. 29-36.
    9. Goble, G. G., Raushe, F., and Likins, G. E. (1980). The analysis of pile driving-a state-of-the-art. In Proceedings of the International Seminar on the Application of Stress-wave Theory to Piles, Stockholm, 131-161.
    10. Hardin, B. O. (1978). The nature of stress-strain behaviour for soils. In Proceedings of Geotechnical Division Specialty Conference on Earthquake Engineering and Soil Dynamics, ASCE, 3-90.
    11. Holden, J. C. (1991). History of the first six CRB calibration chambers. Proceedings, First International Symposium on Calibration Chamber Testing, Potsdam, New York, editor, Huang, A. B., Elsevier, New York, 1-12.
    12. Huang, A. B. and Hsu, H. H. (2005). Cone Penetration Tests under Simulated Field Conditions. Géotechnique, 55(5), 345-354.
    13. Lysmer, J.,and Kuhlmeyer, R. L. (1969). Finite dynamic model for infinite media. Journal of Soil Mechanics and Foundations Division, ASCE, 95(4), 859-878.
    14. Mabsout, M. E., Reese, L. C. and Tassoulas, J. L. (1995). Study of pile driving by finite-element method. Journal of Geotechnical Engineering, 121(7), 535-543.
    15. Ohta, Y., and Goto, N. (1978). Empirical shear wave velocity equations in terms of characteristic soil indexes. Earthquake engineering and structural dynamics, 6(2), 167-187.
    16. Plaxis b. v. (2019). Plaxis 2D version2019, reference manual, Delft, Netherlands.
    17. Rausche, F., Goble, G. G. and Likins, G. E. (1985). Dynamic determination of pile capacity. Journal of Geotechnical Engineering, 111(3), 367-383.
    18. Richart, F. E., Hall, J. R. and Woods, R. D. (1970). Vibrations of soils and foundations.
    19. Skempton, A. W. (1957). Discussion of" The planning and design of the new Hong Kong Air Port". Proceedings of the Institution of Civil Engineers, 7, 305-307.
    20. Skempton, A. W., and Jones, O. T. (1944). Notes on the compressibility of clays. Quarterly Journal of the Geological Society, 100(1-4), 119-135.
    21. Smith, E. A. L. (1960). Pile-driving analysis by the wave equation. Journal of Soil Mechanics and Foundations Division, 86(4), 35-61.
    22. Sun, L., Jia, T., Yan, S., Guo, W., Ren, Y. and Lei, Z. (2016). Prediction of pile running during the driving process of large diameter pipe piles. Ocean Engineering, 128, 48-57.
    23. Terzaghi, K. (1942). Discussion of the progress report of the committee on the bearing value of pile foundation. Proc. ASCE, 68.
    24. Terzaghi, K., Peck, R. B., and Mesri, G. (1996). Soil mechanics in engineering practice. John wiley & sons Publishing.
    25. Vucetic, M., and Dobry, R. (1991). Effect of soil plasticity on cyclic response. Journal of geotechnical engineering, 117(1), 89-107.

    下載圖示 校內:2025-07-31公開
    校外:2025-07-31公開
    QR CODE