簡易檢索 / 詳目顯示

研究生: 林暉程
Lin, Huei-Chen
論文名稱: 廣義相對論中精確解的新觀點
New perspectives on solutions of General Relativity
指導教授: 許祖斌
Soo, Cho-Pin
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 38
中文關鍵詞: 廣義相對論精確解黑洞時變解
外文關鍵詞: General Relativity, exact solution, Painleve-Gullstrand(PG), Horava Gravity, Intrinsic Time Geometrodynamics, time-dependent black hole solution
相關次數: 點閱:85下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討了廣義相對論當中的精確解以及它們在無四維時空對稱理論中的推廣。第一類是Painleve-Gullstrand(PG)類的精確解。這些精確解在全域保持Lorentz signature(-,+,+,+)以及沒有視界座標奇異點。對於非旋轉黑洞具可調函數的廣義PG度規早先由林俊鈺與許祖斌建立。PG度規與其對應的標準型式度規之間的局域Lorentz變換在視界是一個無窮Lorentz boost。在局域插入可調函數容許我們建立免除座標奇異點以及全域實數值的物理廣義PG精確解。本文中建立的廣義PG精確解包含了完整的Newman-Penrose 帶電旋轉黑洞具非零宇宙常數的精確解。對於非旋轉黑洞,我們的PG精確解包含了定曲率解。我們比較了其他已知的精確解,其中一些在某些極端區域遭遇了複數值問題。這些問題在我們的PG精確解當中都不存在,且廣義PG理論也同時是最佳化的理論因其僅需一個額外的函數來克服問題。內稟時間幾何動力學(ITG) 由許祖斌及其合作者在一系列的工作中提倡。在量子的範疇,此理論由具非零Hamiltonian的薛丁格方程描述;愛因斯坦的廣義相對論是此由ITG描述較廣義的理論的一個特殊案例。在此無四維時空對稱的框架中,高階空間曲率包含Ricci項和Cotton-York項是被容許的,並且被導入用來改善紫外收斂性。愛因斯坦理論中定三維曲率精確解具有同時是ITG理論精確解的優勢。這些包含了Schwarzschild-de Sitter精確解的PG型式。除其他事項外,如同建構新精確解,我們確切演示了Schwarzschild-de Sitter PG型式通過所有廣義相對論的觀測測試,像是近日點移以及光偏折,而其他已知Horava理論的精確解極其偏離愛因斯坦理論的預測。

    In this work, exact solutions of General Relativity and its
    generalization to theories without space-time four-covariance are investigated. The first class of solutions studied are Painleve-Gullstrand(PG) type solutions. These maintain Lorentzian signature (-,+,+,+) globally and possess no coordinate singularities at the horizon(s). For non-rotating black holes, generalized PG metrics with adjustable functions were established previously by Lin and Soo. The local Lorentz transformation between the PG solution and the corresponding metric in standard form is an infinite Lorentz boost at the horizon(s). Inserting suitable adjustable functions in the local Lorentz
    transformation allow us to construct physical generalized PG
    solutions which are completely free of coordinate singularities and remain real everywhere. The generalized PG solutions constructed include the complete Newman-Penrose family of charged rotating black holes in the presence of non-trivial cosmological constant. For
    non-rotating black holes, our PG solutions possess constant
    curvature slicings. We compare with well known solutions, some of which become complex when certain extreme ranges of the parameters are encountered. These problems are absent in our PG solutions which are also optimal in that only one extra function for each solution is introduced to cure the problem.

    Intrinsic time geometrodynamics (ITG) was advocated in a series of work by Soo and co-authors. In the quantum context, the theory is described by a Schrodinger equation with a non-trivial physical Hamiltonian; and Einstein's GR is a special case of a wider class of theories described by (ITG). In this scheme without paradigm of space-time four-covariance, higher order spatial curvatures, including Ricci and Cotton-York terms are permitted, and are
    introduced to improve the ultra-violet convergence. Constant
    three-curvature solutions of Einstein's theory have the advantage of being also exact solutions of ITG. These include the Schwarzschild-de Sitter solution in PG form. Among other things, as well as the construction of new solutions, we explicitly demonstrate that the Schwarzschild-de Sitter PG form passes all the observational tests of GR, such as perihelion shift and the bending of light, whereas other known solutions of Horava gravity theories depart starkly from the predictions of Einstein's theory.

    1 Overview . . . . . . . 1 2 Introduction to Painleve-Gullstrand type transformations . . . . 1 2.1 Physical interpretation of the PG transformation . . . . . 2 2.2 Generalized PG coordinates . .. . . . . 3 2.3 Null geodesics . . . . . .. . . . . . . 4 3 Generalized Painleve-Gullstrand descriptions of Kerr-Newman black holes . . . . 5 3.1 Generalized PG transformation for Kerr-Newman solution . . . . . . . . . 6 3.2 The explanation of coordinate transformations for Kerr-Newman black holes . . . . 10 3.3 Discussion on other PG-type metrics . . . . 11 4 Hawking radiation . . . . . . . . . . . . . . 13 4.1 Geodesics . . . . . . . .. . . . . . . . . . 14 4.2 Tunneling amplitudes . . . . . . . . . . . . 14 5 Introduction to Intrinsic TimeGeometrodynamics . . . 15 6 Explicit solutions . . . . . . . . . . . . . . 17 6.1 Constant spatial curvature slicings . . . . . 18 6.2 Solution of the constraints . . . . . . . . . 18 6.3 Constant curvature slicings with t-independent scale factor a . . . . . . . 20 6.4 Time-dependent scale factor, vanishing shift vector and Robertson-Walker solution . . . . . . . . 21 7 Motion of test particle . . . . . . . . 22 7.1 Geodesic equation, perihelion shift and bending of light for Painleve-Gullstrand metric . . . . 23 7.2 Comparison with non-constant curvature solutions in Horava Gravity . . 24 8 Classical General Relativity with emergent ADM lapse . . . . . . . 26 9 Time-dependent black hole solutions . . . . . . 27 9.1 Exact solutions . . . . . . . . . . . . . . . 28 9.2 The interpretation of the expanding solution . . 30 9.3 The McVittie solution . . . . . .. . . . . . . . 30 10 Summary . . . . . . . . . . . . . . . . . 32 Appendix A Tensor calculations in Mathematica 33 References 36

    1. C. Y. Lin and C. Soo, Generalized Painleve-Gullstrand metrics, Phys. Lett. B bf 671, 493 (2009).
    2. R. P. Kerr, Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics, Phys. Rev. Lett. 11 237 (1963).
    3. E. T. Newman, E. Couch, K. Chinnapared, A. Exton, A. Prakash and R. Torrence, Metric of a Rotating, Charged Mass , J. Math. Phys. 6 918 (1965).
    4. B. Carter, Hamilton-Jacobi and Schrodinger separable solutions of Einstein's equations Commun. Math. Phys. 10 280 (1968).
    5. B. Carter, Black Hole Equilibrium States in Black holes: Les Astres Occlus, edited by C. DeWitt and Bryce S. DeWitt, Gordon and Breach Science Publishers (1973).
    6. J. Enderlein, A heuristic way of obtaining the Kerr metric, Amer. J. Phys. 65 897 (1997).
    7. C. Doran, New form of the Kerr solution, Phys. Rev. D 61 067503 (2000) [gr-qc/9910099].
    8. A. Gullstrand, Uber das allgemeine statische, Kugelsymmetrische Gravitationsfeld nach der Einsteinschen Theorie, Arkiv. Mat. Astron. Fys. 16 1 (1922).
    9. P. Painleve, La Mecanique classique et la theorie de la relativite, C. R. Acad. Sci. Paris 173 677 (1921).
    10. T. Jacobson and Y. A. Soong, Slices of the Kerr ergosurface, Class. Quant. Grav. 26 055014 (2009) [0809.2369].
    11. M. K. Parikh and F. Wilczek, Hawking Radiation As Tunneling, Phys. Rev. Lett. 85 5042 (2000) [hep-th/9907001].
    12. Q. Q. Jiang, S. Q. Wu and X. Cai, Hawking radiation as tunneling from the Kerr and Kerr-Newman black holes, Phys. Rev. D 73 064003 (2006) [hep-th/0512351].
    13. B. Mukhopadhyay, Gravity-induced neutrino-antineutrino oscillation: CPT and lepton number non-conservation under gravity, Class. Quant. Grav. 24 1433 (2007) [gr-qc/0702062].
    14. P. Huhtala and G. E. Volovik, Fermionic microstates within Painleve-Gullstrand black hole, J. Exp. Theor. Phys. 94 853 (2002) [gr-qc/0111055].
    15. A. Lasenby, C. Doran, J. Pritchard, A. Caceres, and S. Dolan, Bound states and decay times of fermions in a Schwarzschild black hole background, Phys. Rev. D 72 105014 (2005) [gr-qc/0209090].
    16. J. W. Maluf, S. C. Ulhoa, F. F. Faria and J. F. da Rocha-Neto, The angular momentum of the gravitational field and the Poincare group, Class. Quant. Grav. 23 6245 (2006) [gr-qc/0609018].
    17. J. Natario, Painleve-Gullstrand Coordinates for the Kerr Solution, Gen. Rel. Grav. 41 2579 (2009) [0805.0206].
    18. J. Y. Zhang and Z. Zhao, New coordinates for Kerr-Newman black hole radiation, Phys. Lett. B 618 14 (2005).
    19. L. Vanzo, On tunneling across horizons, Europhys. Lett. 95 20001 (2011) [1104.1569].
    20. L. Vanzo, G. Acquaviva, R. Di Criscienzo, Tunnelling Methods and Hawking's radiation: achievements and prospects [1106.4153v1].
    21. S. W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43} 199 (1975).
    22. K. Umetsu, Tunneling mechanism in Kerr–Newman black hole and dimensional reduction near the horizon, Phys. Lett. B 692 61 (2010) [1007.1823].
    23. S. Iso, H. Umetsu, and F. Wilczek, Anomalies, Hawking radiations, and regularity in rotating black holes, Phys. Rev. D 74 044017 (2006) [hep-th/0606018].
    24. James W. York, Gravitational Degrees of Freedom and the Initial-Value Problem, Phys. Rev. Lett. 26 1656 (1971).
    25. J. A. Valiente Kroon, Nonexistence of Conformally Flat Slices in Kerr and Other Stationary Spacetimes, Phys. Rev. Lett. 92 041101 (2004) [gr-qc/0310048].
    26. S. Chandrasekhar and J. L. Friedman, On the stability of axisymmetric systems to axisymmetric perturbations in general relativity. I. The equations, governing nonstationary stationary, and perturbed systems, Astrophys. J 175 379 (1972).
    27. S. Chandrasekhar, The mathematical theory of black holes, Oxford University Press (1992).
    28. R. M. Wald, General Relativity, University of Chicago Press (1984).
    29. Chopin Soo and Hoi-Lai Yu, General Relativity without paradigm of space-time covariance, and resolution of the problem of time, Prog. Theor. Exp. Phys. 13E01 (2014).
    30. N. O Murchadha, C. Soo and H. L. Yu, Intrinsic time gravity and the Lichnerowicz-York equation, Class. Quantum Grav. 30, 095016 (2013).
    31. Eyo Eyo Ita III, Chopin Soo, and Hoi-Lai Yu, Intrinsic time quantum geometrodynamics, Prog. Theor. Exp. Phys. 083E01 (2015).
    32. P. Horava, Quantum gravity at a Lifshitz point, Phys. Rev. D 79, 084008 (2009).
    33. H. Lu, J. Mei and C. N. Pope, Solutions to Horava Gravity, Phys. Rev. Lett. 103, 091301 (2009)
    34. E. O. Colgain and H. Yavartanoo, Dyonic solution of Horava-Lifshitz Gravity, JHEP 0908, 021 (2009).
    35. A. Ghodsi, Toroidal solutions in Horava gravity, Int. J. Mod. Phys. A 26, 925 (2011).
    36. A.N. Aliev and C. Senturk, Slowly rotating black hole solutions to Horava-Lifshitz gravity, Phys. Rev. D 82, 104016 (2010).
    37. Chopin Soo and Hoi Lai Yu, New commutation relations for quantum gravity, Chin. J. Phys. 53, 110106 (2015) (Chinese Journal of Physics Special Issue On the occasion
    of 100 years since the birth of Einstein's General Relativity).
    38. G. C. McVittie, The mass-particle in an expanding universe, Mon. Not. R. Astron. Soc. 93, 325 (1933).
    39. B. C. Nolan, A point mass in an isotropic universe: Existence, uniqueness, and basic properties, Phys. Rev. D 58, 064006 (1998).
    40. N. Kaloper, M. Kleban and D. Martin, McVittie's Legacy: Black Holes in an Expanding Universe, Phys. Rev. D 81, 104044 (2010).
    41. Huei-Chen Lin and C. Soo, Generalized Painleve-Gullstrand descriptions of Kerr-Newman black holes, Gen. Relativity and Gravitation 45 79-90 (2013).
    42. Huei-Chen Lin and Chopin Soo, Intrinsic time geometrodynamics: explicit examples, Chin. J. Phys. 53 110102 (2015) (Chinese Journal of Physics Special
    Issue On the occasion of 100 years since the birth of Einstein's General Relativity).

    下載圖示 校內:2020-07-01公開
    校外:2020-07-01公開
    QR CODE