簡易檢索 / 詳目顯示

研究生: 蔡明翰
Tsai, Ming-Hang
論文名稱: 單一或雙液滴捕捉二氧化碳之數值模擬研究
Numerical Study on CO2 Absorption by Single Droplet or Twin Droplets
指導教授: 洪振益
Hung, Chen-I
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 86
中文關鍵詞: 液滴洗滌塔鹼性溶劑二氧化碳捕捉數值預測暫態化學吸收氫氧化鈉串列式液滴間的交互作用
外文關鍵詞: Droplet and spray, Alkaline solution, Carbon dioxide (CO2) capture, Numerical prediction, Transient chemical absorption, sodium hydroxide, In tandem, Droplet droplet interaction
相關次數: 點閱:140下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 洗滌塔中的單一鹼性液滴二氧化碳捕捉在減少溫室氣體方面扮演著一個重要的角色,本研究著重在洗滌塔中鹼性單液滴內部二氧化碳捕捉過程的數值方法,且採用三種不同的初始pH值10、11和12,同時,無化學解離的吸收過程(物理吸收)也被探討以便互相比較。液滴內的化學解離會延長二氧化碳捕捉的過程,而質量擴散是控制二氧化碳捕捉過成的主要機制,對化學吸收來說,最後能被液滴吸收的二氧化碳總量主要是由受到初始pH值影響的 來決定,增加初始pH值提升液滴吸收二氧化碳的總量,而平均 濃度遠小於 和 .。對應初始pH值10、11和12,液滴由鹼性變成酸性需要的時間的指數分別為10、100和1000 ms,當初使pH值較高時,較大的吸收量以及較短的吸收週期,因此碳捕捉速率隨著初始pH值增加而提升,所以使用初始pH=12的鹼性液滴來捕捉二氧化碳會比pH=10和11好。
    大氣中液滴吸收二氧化碳是大氣中碳循環的一部分,為了瞭解大氣中二氧化碳傳輸的粒子物理學,本研究發展一數值方法來預測串列式雙液滴的暫態二氧化碳吸收過程,並特別探討液滴間的相互影響對於質量傳輸的作用,本研究氣相考慮連續方程式及動量方程式,而液相則考慮連續方程式、動量方程式及成份傳輸方程式,另有兩個重要的變數:液滴間距(0.5和3倍的液滴直徑)和雷諾數(0.1、1和10)被考慮。結果顯示當Re=0.1時徑向擴散支配著液滴內的 的傳輸,當Re=10時內部環流在質量傳輸上扮演著重要的角色,當Re=1,徑向擴散和內部環流的影響力相當。液滴的吸收速率受到液滴間距些微的影響,下游液滴的吸收速率總是小於上游液滴,起因是受到上游流場的干擾。

    Carbon dioxide captured by single droplets in sprays plays a fundamental role in reducing greenhouse gas emissions. This study focuses on CO2 capture processes in single droplets in alkaline sprays using a numerical method. Three different initial pH values of 10, 11, and 12 in the droplet are considered. The capture behavior in the absence of chemical dissociation is also investigated for comparison. The predictions suggest that the chemical dissociation in the droplet substantially elongates the CO2 capture process and the mass diffusion is the controlling mechanism of CO2 capture process. For the chemical absorption, the final CO2 capture amount by the droplet is mainly determined by which is significantly influenced by the initial pH value. An increase in initial pH value raises the carbon capture amount by the droplet. The mean concentration of is by far lower than those of and . Corresponding to the initial pH values of 10, 11, and 12, the times required for turning the basic droplet to the acidic one are in the orders of 10, 100, and 1000 ms. On account of larger carbon capture amount and shorter absorption period at a higher initial pH value, the carbon capture rate is lifted as the initial pH value rises, and CO2 capture by droplets at the initial pH value of 12 is better than those at 10 and 11.
    In the second part of this research, a study of carbon dioxide absorbed by atmospheric aerosol droplets can account for the carbon cycle in the atmosphere in part. To figure out the microphysics of carbon dioxide transport in the atmosphere, a numerical method is developed to predict the transient absorption processes of CO2 by a pair of convecting droplets in tandem. Particular attention is paid to the mass transport influenced by the droplet droplet interaction. The governing equations include the continuity and momentum equations in gas phase, and the continuity, momentum, and species equations in the liquid phase. Two important parameters of droplet spacing (0.5 and 3 droplet diameter) and Reynolds number (0.1, 1, and 10) are considered. The results show that radial diffusion dominates the transport in the droplets at Re=0.1, whereas internal circulation plays an important role in moving the solute at Re=10. As a result, the absorption rates of the two droplets are close to each other, regardless of what the droplet spacing is. For the case of Re=1, the radial diffusion and the internal circulation are in a comparable state. The absorption rates of the droplets are affected by the droplet spacing to a small extent. The absorption rate of the downstream droplet is always lower than that of the upstream one, resulting from the disturbance of flow field around the former.

    摘要 II 誌謝 VI 目錄 VII 表目錄 XI 圖目錄 XII 符號說明(Nomenclature) XV 第一章 緒論 1 1.1 前言 1 1.2 研究動機及目的 3 1.3 研究流程圖 5 第二章 文獻回顧 7 2.1 地球的碳循環 7 2.2 大氣中的氣體吸收機制 8 2.3 質量傳輸理論 9 2.4 液滴的內部環流 9 2.5 CO2的化學吸收 11 2.6 化學吸收的動力機構 13 第三章 研究方法 14 3.1 物理問題及模式說明 14 3.2 鹼性單液滴吸收 14 3.2.1 模型問題的基本假設 14 3.2.2 統御方程式(Governing Equation) 15 3.2.3 初始條件和邊界條件 17 3.2.4 CO2反應機構 17 3.2.5 數值方法(Numerical Method) 21 3.2.6 離散(Discretization) 21 3.2.7 SIMPLE運算法則 22 3.2.8 鬆弛係數 23 3.2.9 格點獨立性測試 23 3.3 串列式液滴吸收 25 3.3.1 模型問題的基本假設 25 3.3.2 統御方程式(Governing Equation) 25 3.3.3 初始條件和邊界條件 26 3.3.4 數值方法(Numerical Method) 29 3.3.5 離散(Discretization) 29 3.3.6 PARDISO求解法 30 3.3.7 阻尼常數(Damping constant) 31 3.3.8 格點獨立性測試 31 3.3.9 數值模型驗證 34 第四章 結果與討論 37 4.1 鹼性液滴對於CO2吸收的特性分析 37 4.1.1 液滴內部流動及質量傳輸 41 4.1.2 化學吸收的動態行為 47 4.1.3 二氧化碳捕捉過程、週期以及吸收速率 52 4.2 串列式液滴對於CO2吸收的特性分析 57 4.2.1 流場結構 60 4.2.2 Re=0.1時的二氧化碳動態傳輸 62 4.2.3 Re=10時的二氧化碳動態傳輸 66 4.2.4 暫態二氧化碳吸收 70 第五章 結論與未來工作 75 5.1 結論 75 5.1.1 鹼性單液滴吸收之結論 75 5.1.2 串列式雙液滴吸收之結論 76 5.2 未來工作 77 參考文獻 78 自述 86

    1. Adewuyi, Y. G., Carmichael, G. R. (1982). A theoretical investigation of gaseous absorption by water droplets from SO2-HNO3-CO2-HCl mixture. Atmospheric Environment, 16, 719–729.
    2. Aronu, U. E., Svendsen, H, Hoff, K. A. (2010). Investigation of amine amino acid salts for carbon dioxide absorption. International Journal of Greenhouse Gas Control, 4, 771–775.
    3. Baz-Rodríguez, S. A., Ramírez-Muñoz, J., Soria, A. (2012). In-line interaction between two spherical particles due to a laminar wake effect. International Journal of Multiphase Flow, 39, 240–244.
    4. Berner, R. A. (2003). The long-term carbon cycle, fossil fuels and atmospheric composition. Nature, 426, 323–326.
    5. Boucot, A. J., Gray, J. (2001). A critique of Phanerozoic climatic models involving changes in the CO2 content of the atmosphere. Earth-Science Reviews, 56, 1–159.
    6. Broström, G. (2000). The role of the annual cycles for the air–sea exchange of CO2. Marine Chemistry, 75, 151–169.
    7. Brunetti, A., Scura, F., Barbieri, G., Drioli, E. (2010). Membrane technologies for CO2 sepration. Journal of Membrane Science, 359, 115–125.
    8. Butler, J.H. (2012) The NOAA Annual Greenhouse Gas Index (AGGI). Retrieved from http://www.esrl.noaa.gov/gmd/aggi/
    9. Cents, A. H. G., Brilman, D. W. F., Versteeg, G. F. (2005). CO2 absorption in carbonate/bicarbonate solutions: The Danckwerts-criterion revisited. Chemical Engineering Science, 60, 5830–5835.
    10. Chang, E. E., Wang, Y. C., Pan, S. Y., Chen, Y. H., Chiang, P. C. (2012). CO2 capture by using blended hydraulic slag cement via a slurry reactor. Aerosol and Air Quality Research, 2, 1433–1443.
    11. Chen, W. H. (2001a). Unsteady absorption of sulfur dioxide by an atmospheric water droplet with internal circulation. Atmospheric Environment, 35, 2375–2393.
    12. Chen, W. H. (2001b). Dynamics of sulfur dioxide absorption in a raindrop falling at terminal velocity. Atmospheric Environment, 35, 2777–2790.
    13. Chen, W. H. (2002). An analysis of gas absorption by a liquid aerosol in a stationary environment. Atmospheric Environment, 36, 3671–3683.
    14. Chen, W. H. (2006). Air pollutant absorption by single moving droplets with drag force at moderate Reynolds numbers. Chemical Engineering Science, 61, 449–458.
    15. Chen, W. H., Chen, Y. Y., Hung, C. I. (2011a). A simplified model of predicting SO2 absorption by single atmospheric raindrops with chemical dissociation and internal circulation. Aerosol and Air Quality Research, 11, 860–872.
    16. Chen, W. H., Chen, Y. Y., Hung, C. I. (2012a). Transient SO2 uptake dynamics in an atmospheric water aerosol with internal circulation and chemical dissociation. Journal of Atmospheric and Solar-Terrestrial Physics, 77, 67–77.
    17. Chen, W. H., Hou, Y. L., Hung, C. I. (2011b). A theoretical analysis of the capture of greenhouse gases by single water droplet at atmospheric and elevated pressures. Applied Energy, 88, 5120–5130.
    18. Chen, W. H., Hou, Y. L., Hung, C. I. (2012b). A study of influence of acoustic excitation on carbon dioxide capture by a droplet. Energy, 37, 311–321.
    19. Chen, W. H., Hou, Y. L., Hung, C. I. (2012c). Influence of droplet mutual interaction on carbon dioxide capture process in sprays. Applied Energy, 92:185–193.
    20. Chen, W. H., Lu, J. J. (2003). Microphysics of atmospheric carbon dioxide uptake by a cloud droplet containing a solid nucleus. Journal of Geophysical Research, 108, 4470–4478.
    21. Davison, J. (2007) Performance and costs of power plants with capture and storage of CO2. Energy, 32, 1163–1176.
    22. Diao, Y. F., Zheng, X. Y., He, B. S., Chen, C. H., Xu, X. C. (2004). Experimental study on capturing CO2 greenhouse gas by ammonia scrubbing. Energy Conversion and Management, 45, 2283–2296.
    23. Dinda, S., Patwardhan, A. V., Panda, S. R., Pradhan, N. C. (2008). Kinetics of reactive absorption of carbon dioxide with solutions of aniline in carbon tetrachloride and chloroform. Chemical Engineering Journal, 136, 349–357.
    24. Durand, A. J., Le Quere, C., Hope, C., Friend, A. D. (2011). Economic value of improved quantification in global sources and sinks of carbon dioxide. Philosophical Transactions of the Royal Society A, 369, 1967–1979.
    25. Elperin, T., Fominykh, A., Krasovitov, B. (2010). Scavenging of soluble trace gases by falling rain droplets in inhomogeneous atmosphere. Atmospheric Environment, 44, 2133–2139.
    26. Falkowski, P., Scholes, R. J., Boyle, E., Canadell, J., Canfield, D.,…Linder, S. (2000). The global carbon cycle: a test of our knowledge of earth as a system. Science, 290, 291–296.
    27. Franck, S., Kossacki, K., Bounama, C. (1999). Modelling the global carbon cycle for the past and future evolution of the earth system. Chemical Geology, 159, 305–317.
    28. Gao, X., Huo, W., Luo, Z. Y., Cen, K. F. (2008). CFD simulation with enhancement factor of sulfur dioxide absorption in the spray scrubber. Journals of Zhejiang University-Science A, 9(11), 1601–1613.
    29. Guo, Y., Niu, Z., Lin, W. (2011). Comparison of removal efficiencies of carbon dioxide between aqueous ammonia and NaOH solution in a fine spray column. Energy Procedia, 4, 512–518.
    30. Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W., Medina-Elizade, M. (2006). Global temperature change. Proceedings of the National Academy of Sciences U.S.A., 103, 14288–14293.
    31. Hossain, A. M. M. M., Park, K. (2012). Exploiting potentials from interdisciplinary perspectives with reference to global atmosphere and biomass burning management. Aerosol and Air Quality Research, 12, 123–132.
    32. IPCC. Climate change 2007: synthesis report.
    33. Javed, K. H., Mahmud, T., Purba, E. (2010). The CO2 capture performance of a high-intensity vortex spray scrubber. Chemical Engineering Journal, 162, 448–456.
    34. Kanniche, M., Gros-Bonnivard, R., Jaud, P., Valle-Macros, J., Amann, J., Bouallou, C. (2010). Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Applied Thermal Engineering, 30, 53–62.
    35. Koller, M., Wappel, D., Trofaier, N., Gronald, G. (2011). Test results of CO2 spray scrubbing with monoethanolamine. Energy Procedia, 4, 1777–1782.
    36. Leclair, B. P., Hamielec, A. E. (1972). A theoretical and experimental study of the internal circulation in water drops falling at terminal velocity in air. Journal of the Atmospheric Sciences, 29, 728–740.
    37. Li, H., Jakobsen, J. P., Wilhelmsen, Ø., Yan, J. (2011). PVTxy properties of CO2 mixtures relevant for CO2 capture, transport and storage: review of available experimental data and theoretical models. Applied Energy, 88, 3567–3579.
    38. Li, H., Yan, J. (2009a). Evaluating cubic equations of state for calculation of vapor–liquid equilibrium of CO2 and CO2-mixtures for CO2 capture and storage processes. Applied Energy, 86, 826–836.
    39. Li, H., Yan, J. (2009b). Impacts of equations of state (EOS) and impurities on the volume calculation of CO2 mixtures in the applications of CO2 capture and storage (CCS) processes. Applied Energy, 86, 2760–2770.
    40. Li, H., Yan, J., Yan, J., Anheden, M. (2009). Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system. Applied Energy, 86, 202–213.
    41. Liu, C. H., Lin, S. J., Lewis, C. L. (2012). Environmental impacts of electricity sector in Taiwan by using input-output life cycle assessment: The role of carbon dioxide emissions. Aerosol and Air Quality Research, 12, 733–744.
    42. Liu, H., Shao, Y. (2010). Predictions of the impurities in the CO2 stream of an oxy-coal combustion plant. Applied Energy, 87, 3162–3170.
    43. Ma, Y., Gao, X., Zhu, C., Yu, G. (2005). The analysis of gas absorption into a stationary droplet in atmospheric environment. Chinese Journal of Chemical Engineering, 13, 837–840.
    44. Marocco, L. (2010). Modeling of the fluid dynamics and SO2 absorption in a gas–liquid reactor. Chemical Engineering Journal, 162, 217–226.
    45. Meinshausen, M., Raper, S. C. B., Wigley, T. M. L. (2011). Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 – Part 1: Model description and calibration. Atmospheric Chemistry and Physics, 11, 1417–1456.
    46. Meyssignac, B., Cazenave, A. (2012). Sea level: A review of present-day and recent-past changes and variability. Journal of Geodynamics, 58, 96–109.
    47. Olajire, A. A. (2010). CO2 capture and separation technologies for end-of-pipe application – A review. Energy, 35, 2610–2628.
    48. Ou, X., Xiaoyu, Y., Zhang, X. (2011). Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China. Applied Energy, 88, 289–297.
    49. Pan, S. Y., Chang, E. E., Chiang, P. C. (2012). CO2 Capture by accelerated carbonation of alkaline wastes: a review on its principles and applications. Aerosol and Air Quality Research, 12, 770–791.
    50. Peng, Y., Zhao, B., Li, L. (2012). Advance in post-combustion CO2 capture with alkaline solution: A brief review. Energy Procedia, 14, 1515–1522.
    51. Piarah, W. H., Paschedag, A., Kraume, M. (2001). Numerical simulation of mass transfer between a single drop and an ambient flow. American Institute of Chemical Engineers, 47, 1701–1704.
    52. Post, W. M., Peng, T. H., Emanuel, W. R., King, A. W., Dale, V. H., DeAngelis, D. L. (1990). The global carbon cycle. American Scientist, 78, 310–326.
    53. Prahl, L., Hölzer, A., Arlov, D., Revstedt, J., Sommerfeld, M., Fuchs, L. (2007). On the interaction between two fixed spherical particles. International Journal of Multiphase Flow, 33, 707–725.
    54. Pruppacher, H. R., Beard, K. V. (1970). A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Quarterly Journal of the Royal Meteorological Society, 96, 247–256.
    55. Raphael, I., Paitoon, T. (2006). Preface for the special issue on the capture of carbon dioxide drom industrial sources technological developments and future opportunities. Industrial and Engineering Chemistry Research, 45, 2413–2413.
    56. Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A., Lenaerts, J. (2011). Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters, 38, L05503.
    57. Rowe, P. N., Henwood, G. A. (1961). Drag forces in a hydraulic model of a fluidized bed – Part I. Transactions of the Institution of Chemical Engineers, 39, 43–54.
    58. Sanyal, D., Vasishtha, N., Saraf, D. N. (1988). Modeling of carbon dioxide absorber using hot carbonate process. Industrial and Engineering Chemistry Research, 27, 2149–2156.
    59. Schenk, O., Gärtner, K. (2004). Solving unsymmetric sparse systems of linear equations with PARDISO. Future Generation Computer Systems, 20, 475–487.
    60. Schimel, D. S. (1995). Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1, 77–91.
    61. Schlesinger, W. H., Andrews, J. A. (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7–20.
    62. Seinfeld, J. H. (1986). Atmospheric Chemistry and Physics of Air Pollution. New York:Wiley.
    63. Seinfeld, J. H., Pandis, S. N. (1998). Atmospheric Chemistry and Physics. New York:Wiley.
    64. Serrano-Ortiz, P., Roland, M., Sanchez-Moral, S., Janssens, I. A., Domingo, F., Goddéris, Y., Kowalski, A. S. (2010). Hidden, abiotic CO2 flows and gaseous reservoirs in the terrestrial carbon cycle:Review and perspectives. Agricultural and Forest Meteorology, 150, 321–329.
    65. Stolaroff, J. K., Keith, D. W., Lowry, G. V. (2008). Carbon dioxide capture from atmospheric air using sodium hydroxide spray. Environmental Science and Technology, 42, 2728–2735.
    66. Tal, R., Less, D. N. L., Sirignano, W. A. (1984). Heat and momentum transfer around a pair of spheres in viscous flow. International Journal of Heat and Mass Transfer, 27, 1953–1962.
    67. Tanaka, Y. (2010). Water dissociation reaction generated in an ion exchange membrane. Journal of Membrane Science, 350, 347–360.
    68. Vermeer, M., Rahmstorf, S. (2009). Global sea level linked to global temperature. Proceedings of the National Academy of Sciences U.S.A., 106, 21527–21532.
    69. Viebahn, P., Daniel, V., Samuel, H. (2012). Integrated assessment of carbon capture and storage (CCS) in the German power sector and comparison with the deployment of renewable energies. Applied Energy, 97, 238–248.
    70. Wang, M., Lawal, A., Stephenson, P., Sidders, P., Ramshaw, C. (2011). Post-combustion CO2 capture with chemical absorption: A state-of-the art review. Chemical Engineering Research and Design, 89, 1609-1624.
    71. White, F. M. (1974). Viscous Fluid Flow. New York:McGraw-Hill.
    72. Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R. B., Band, A. E., Wright, I. (2008). Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences, 20, 14–27.
    73. Yi, C. K., Jo, S. H., Seo, Y., Lee, J. B., Ryu, C. K. (2007). Continuous operation of the potassium-based dry sorbent CO2 capture process with two fluidized-bed reactors. International Journal of Greenhouse Gas Control, 1, 31–36.
    74. Yu, C. H., Huang, C. H, Tan, C. S. (2012). A review of CO2 capture by absorption and adsorption. Aerosol and Air Quality Research, 12, 745–769.
    75. Zhang, X., Wang, X. Y., Bai, Z. P., Han, B. (2013). Co-Benefits of integrating PM10 and CO2 reduction in an electricity industry in Tianjin, China. Aerosol and Air Quality Research, 13,756–770.
    76. 陳維新(2012年7月/三版)。生質物與生質能。新北市:高立圖書有限公司。
    77. 陳維新(2012年8月/六版)。能源概論。新北市:高立圖書有限公司。
    78. 陳維新(2012年2月/十三版)。空氣污染與控制。新北市:高立圖書有限公司。

    無法下載圖示 校內:2018-07-17公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE