簡易檢索 / 詳目顯示

研究生: 黃博建
Huang, Po-Chien
論文名稱: 銦摻雜及未摻雜之氧化鋅奈米線及奈米緞帶熱電性質之研究
Study of thermoelectric properties of Indium doped and un-doped ZnO nanowires and nanobelts
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 81
中文關鍵詞: 氧化鋅熱電電性量測摻雜奈米結構
外文關鍵詞: Zinc Oxide, Thermoelectric, electrical property measurement, dpoing, nanostructure
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對三種不同氧化鋅奈米結構,分別為化學氣相沉積法
    (CVD)成長之氧化鋅奈米線、化學氣相沉積法(CVD)成長之摻雜銦的
    氧化鋅緞帶結構以及水熱法製程(Hydrothermal method)成長之氧化鋅
    奈米線進行單根奈米線熱電性質分析,利用電子束微影技術,在電性
    量測晶片上製作微加熱器以及特殊電極線路以進行單根奈米線
    Seebeck 係數量測,並利用四點量測(four probe measurement)方式量測
    單根奈米線之導電率而計算出奈米線之熱電功率因數(thermoelectric
    power factor)。在結構分析上分別以掃描式電子顯微鏡(Scanning
    Electron Microscopy, SEM)和穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)分析三種氧化鋅奈米結構之表面形貌與微結構分析,並探討其微結構以及組成之差異、不同摻雜情形和載子濃度等對於熱
    電性質之影響。本研究發現水熱法製程成長之氧化鋅奈米線擁有最大
    之Seebeck 係數值,而化學氣相沉積法成長之摻雜銦的氧化鋅緞帶結
    構擁有最大之power factor 之值,以及最大之導電率,因此可以利用
    銦摻雜的方式改變奈米線之導電率以及提升其熱電性質。

    This study is to investigate thermoelectric properties of individual ZnO nanostructures of three types, including un-doped ZnO nanowires and In doped ZnO nanobelts grown by chemical vapor deposition (CVD),and un-doped ZnO nanowires grown by hydrothermal method. To measure Seebeck coefficient, as-grown single nanowires were placed on a
    device constituting of a pair of micro-heaters with a designed circuit for sensing the temperature difference between two ends of the nanowires. Combining Seebeck coefficient with electrical conductivity measured by
    four probe measurement, thermoelectric power factor can be derived. The morphology and microstructure of the ZnO nanostructures were characterized by scanning electron microscopy and transmission electron microscopy. The influence of microstructure, chemical composition, and carrier concentration of the ZnO nanostructures on thermoelectric properties is discussed. From the results, the ZnO nanowires grown by hydrothermal method exhibits the largest Seebeck coefficient. While electrical conductivity
    could be optimized by doping In into ZnO nanostrucutres,
    thermoelectric power factor is also enhanced.

    總目錄 中文摘要................ II Abstract.............. III 致謝................... IV 目錄.................... V 表目錄.................. VI 圖目錄................. VII 第一章 前言及研究目的....... 1 1-1 前言 ................ 1 1-2 研究動機.............. 2 第二章 文獻回顧............. 4 2-1 熱電原理............... 4 2-2 一維奈米線之熱電性質...... 9 2-3 氧化鋅簡介.............. 14 2-4 氧化鋅奈米線熱電性質研究現況..... 18 第三章 實驗步驟與分析儀器........ 24 3-1 實驗流程.................. 24 3-2 氧化鋅奈米結構成長.......... 25 3-3 電性量測及元件製備.......... 27 3-4 Seebeck 係數量測及元件製備...... 29 3-5 結構與元素分析................. 32 第四章 結果與討論 .................. 36 4-1 結構分析...................... 37 4-2 氧化鋅奈米結構電性量測............ 45 4-3 微加熱器對金屬電極以及奈米線之加熱效應量測 ........... 52 4-4 單根奈米線熱感應電壓 (thermal voltage)量測及分析..... 58 4-5 不同氧化鋅奈米結構之Seebeck Coefficient 以及thermoelectric power factor 之計算與比較.............. 63 4-6 Thermoelectric Power Factor 計算及探討載子濃度之影響 .... 75 第五章 結 論.............. 77 第六章 參考文獻........... 79

    [1] A. D. Bass JC, "Milliwatt radioisotope power supply for space applications,"presented at the Proc. Int. Conf. Thermoelectr., Baltimore, pp. 521–524, 1999.
    [2] L. E. Bell, "Cooling, heating, generating power, and recovering waste heat with thermoelectric systems," Science, vol. 321, 5895, pp. 1457-1461, 2008.
    [3] V. Leonov and R. J. M. Vullers, "Wearable Thermoelectric Generators for Body-Powered Devices," Journal of Electronic Materials, vol. 38, 7, pp.1491-1498, 2009.
    [4] L. Hicks and M. Dresselhaus, "Effect of quantum-well structures on the thermoelectric figure of merit," Physical Review B, vol. 47, 19, pp.12727-12731, 1993.
    [5] L. Hicks and M. Dresselhaus, "Thermoelectric figure of merit of a one-dimensional conductor," Physical Review B, vol. 47, 24, pp. 16631-16634, 1993.
    [6] R. Venkatasubramanian, et al., "MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications," Journal of
    Crystal Growth, vol. 170, 1-4, pp. 817-821, 1997.
    [7] R. Venkatasubramanian, "Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures," Physical Review B, vol. 61,
    4, pp. 3091-3097, 2000.
    [8] R. Venkatasubramanian, et al., "Thin-film thermoelectric devices with high room-temperature figures of merit," Nature, vol. 413, 6856, pp. 597-602,2001.
    [9] Z. W. Yang, et al., "Geometry dependent current-voltage characteristics of ZnO nanostructures: A combined nonequilibrium Green's function and density
    functional theory study," Applied Physics Letters, vol. 95, 19, p. 192101, 2009.
    [10] F. J. DiSalvo, "Thermoelectric cooling and power generation," Science, vol. 285, 5428, pp. 703-706, 1999.
    [11] A. Shakouri, "Recent Developments in Semiconductor Thermoelectric Physics
    and Materials," Annual Review of Materials Research, vol. 41, 1, pp. 399-431,
    2011.
    [12] M. Cutler, et al., "Electronic Transport in Semimetallic Cerium Sulfide," Physical Review, vol. 133, 4A, pp. A1143-A1152, 1964.
    [13] D. M. Rowe, Thermoelectrics Handbook: Macro to Nano: CRC/To & Nano,2005.
    [14] Richman.R, "Prospects for efficient thermoelectric materials in the near term," presented at the DARPA/DOE High Efficient Thermoelectric Workshop, San Diego, CA, 2002.
    [15] K. Nielsch, et al., "Thermoelectric Nanostructures: From Physical Model
    Systems towards Nanograined Composites," Advanced Energy Materials, vol.1, 5, pp. 713-731, 2011.
    [16] Z. B. Zhang, et al., "Magnetotransport investigations of ultrafine single-crystalline bismuth nanowire arrays," Applied Physics Letters, vol. 73, 11, pp. 1589-1591, 1998.
    [17] Z. B. Zhang, et al., "Electronic transport properties of single-crystal bismuth nanowire arrays," Physical Review B, vol. 61, 7, pp. 4850-4861, 2000.
    [18] Y. M. Lin, et al., "Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires," Physical Review B, vol. 62, 7, pp.
    4610-4623, 2000.
    [19] X. Sun, et al., "Theoretical modeling of thermoelectricity in Bi nanowires,"
    Applied Physics Letters, vol. 74, 26, pp. 4005-4007, 1999.
    [20] C.-L. Chen, et al., "Fabrication and Characterization of Electrodeposited Bismuth Telluride Films and Nanowires," Journal of Physical Chemistry C, vol. 114, 8, pp. 3385-3389, 2010.
    [21] J. H. Zhou, et al., "Thermoelectric properties of individual electrodeposited bismuth telluride nanowires," Applied Physics Letters, vol. 87, 13, p. 133109,
    2005.
    [22] X. B. Zhao, et al., "Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites," Applied
    Physics Letters, vol. 86, 6, p. 062111, 2005.
    [23] N. Mingo, "Thermoelectric figure of merit of II-VI semiconductor nanowires "Applied Physics Letters, vol. 88, 13, p. 139901, 2006.
    [24] J. W. Roh, et al., "Size-dependent thermal conductivity of individual single-crystalline PbTe nanowires," Applied Physics Letters, vol. 96, 10, p.
    103101, 2010.
    [25] D. Y. Li, et al., "Thermal conductivity of individual silicon nanowires,"Applied Physics Letters, vol. 83, 14, pp. 2934-2936, 2003.
    [26] A. I. Boukai, et al., "Silicon nanowires as efficient thermoelectric materials,"Nature, vol. 451, 7175, pp. 168-171, 2008.
    [27] A. I. Hochbaum, et al., "Enhanced thermoelectric performance of rough silicon nanowires," Nature, vol. 451, 7175, pp. 163-U5, 2008.
    [28] U. Ozgur, et al., "A comprehensive review of ZnO materials and devices,"Journal of Applied Physics, vol. 98, 4, p. 041301, 2005.
    [29] A. Janotti and C. G. Van de Walle, "Fundamentals of zinc oxide as a semiconductor," Reports on Progress in Physics, vol. 72, 12, p. 126501, 2009.
    [30] K. P. Ong, et al., "Analysis of the thermoelectric properties of n-type ZnO,"Physical Review B, vol. 83, 11, p. 115110, 2011.
    [31] C.-H. Lee, et al., "Thermoelectric power measurements of wide band gap semiconducting nanowires," Applied Physics Letters, vol. 94, 2, p. 022106,2009.
    [32] S. C. Andrews, et al., "Atomic-level control of the thermoelectric properties in polytypoid nanowires," Chemical Science, vol. 2, 4, p. 706, 2011.
    [33] 沈卉紋, "Growth and Electrical Properties of Indium Doped ZnO Nanostructures," 國立成功大學 碩士論文, 2011.
    [34] 汪建民, 材料分析 Materials Analysis, 1998.
    [35] K. Ellmer, "Resistivity of polycrystalline zinc oxide films: current status and physical limit," Journal of Physics D-Applied Physics, vol. 34, 21, pp.
    3097-3108, 2001.
    [36] S. H. Lee, et al., "Thermoelectric properties of individual single-crystalline PbTe nanowires grown by a vapor transport method," Nanotechnology, vol. 22,
    29, p. 295707, 2011.
    [37] Q. Huang, et al., "Electrical Failure Analysis of Au Nanowires," Ieee Transactions on Nanotechnology, vol. 7, 6, pp. 688-692, 2008.
    [38] D. H. Lloyd, Physics Laboratory Manual, 2nd ed.: Saunders college Publishing, 1998.
    [39] X. Qu, et al., "Thermoelectric properties and electronic structure of Al-doped ZnO," Solid State Communications, vol. 151, 4, pp. 332-336, 2011.

    無法下載圖示 校內:2017-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE