| 研究生: |
林哲安 Lin, Che-An |
|---|---|
| 論文名稱: |
以代謝通量方法評估 Clostridium tyrobutyricum 之生物產氫表現 Evaluation of fermentative biohydrogen by the use of Clostridium tyrobutyricum metabolic flux consideration |
| 指導教授: |
黃良銘
Whang, Liang-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | Clostridium tyrobutyricum 、生物產氫 、CellNetAnalyzer 、代謝 |
| 外文關鍵詞: | Clostridium tyrobutyricum, bio-hydrogen, CellNetAnalyzer, metabolism |
| 相關次數: | 點閱:173 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前全球所使用的能源約有80%來自化石燃料。如此大量依賴單一型態的能源利用結構,是主要造成目前全球各種能源相關問題的主要因素。其衍伸的問題擴及經濟與環境層面。開發永續、潔淨的替代能源為各國關注的焦點。當前再生能源中,利用生物系統產氫為一同時具有經濟與環保價值的概念。
生物系統產氫中,厭氧生物產氫程序可以針對各種廢棄有機物,進行能源回收。此為一資源再利用的優勢,極具發展潛力。而針對厭氧生物產氫系統,目前在代謝機制上的分析,仍不明確。本研究試以代謝通量方法評估Clostridium tyrobutyricum 之生物產氫表現。
Clostridium tyrobutyricum 純菌植入連續流攪拌反應器 (Continuous-flow stirred tank reactor, CSTR),以 12,000 mg/L 葡萄糖作為進流基質,溫度控制於 35℃,所有試程的 pH 皆在 5.95-6.05 間,將反應槽操作在不同水力停留時間 (HRT = 18, 12, 8, 6, 4, 3, 2.5, 2, hr,共 8 個試程),並收集穩定狀態下的氣體及水質數據。C. tyrobutyricum 的最大產氫速率、比產氫速率與產氫濃度皆是在水力停留時間 2 小時的試程出現最大值,而氫氣產率則是在水力停留時間 18 小時出現最大值,分別為 5.63 mmol H2/L.hour、5.04 (H2mmoL/g dryweight*hr)、80% 和1.42 mol H2/mol-glu-applied 。
由碳平衡、COD、O/R、NADH流量四種平衡方式,確立細胞外部最終產物所表現方程式的正確性。碳平衡和COD平衡,其回收率約±10%之間。O/R值整體回收率約只能達到55%,有可能是因為部分產物無法計算,導致誤差放大;另外整體的NADH平衡則有97%的回收率。
另外利用CellNetAnalyzer 評估細胞內部中間產物的物質與能量流向,最後依據整體計量,建構整體系統的代謝路徑。利用代謝路徑計算ATP的生成和消耗後發現,計量的ATP確有不足的現象,並且經由與H2的yidld的比較,發現H2的yidld與計量的ATP不足成一高度正相關。而此一現象與產氫不利於熱力學相關。
80% of global utilized energy comes from fossil fuels, and the energy shortage mainly comes from this dependence. Since the energy issue affects both economy and environment, the governments paid much attention on finding a clean and Sustainability energy. Hydrogen is considered as a clean and efficient energy among renewable energies.
Hydrogen can be produced from organic materials by anaerobic microorganism but the mechanism of fermentative hydrogen production is not clear. Thus, our research will focus on evaluation of fermentative biohydrogen with metabolic flux consideration by Clostridium tyrobutyricum.
In our study, the influent substrates were 12,000 mg/L glucose, temperature was maintained at 35℃, and pH was controlled at 6±0.05 by computer. The reactor was operated at different hydraulic retention times (HRT 18, 12, 8, 6, 4, 3, 2.5, 2 hr), and we collected gas production and water quality data under steady state at each HRT. Our result shows that maximum hydrogen production rate, maximum specific hydrogen production rate and maximum hydrogen concentration, 5.63 mmol H2/L*hr, 5.04 (H2mmoL/g dry weight*hr) and 80%, were all occurred at HRT 2 hr. However, maximum hydrogen yield, 1.42 mol H2/mol-glucose-applied, was observed at HRT 18 hr.
In addition, we used 4 balance systems, e.g. carbon balance, COD, O/R value and NADH, to evaluate the end products. The experimental errors of carbon and COD recovery rates were ±10% respectively. The recovery rate of O/R value was only 55%, because a meager part of end products could not be included in this calculation, the error was enlarged. Besides, the average of NADH balance was 97%.
Finally, we used CellNetAnalyzer to evaluate the rates of metabolic pathways at each HRT. The difference between produced and utilized ATP shows that ATP is shortage in the cell and there was a relationship between the values of shortage ATP and H2. This situation had a relationship with hydrogen yield which is unfavorable based on thermodynamic analysis.
Adams, M. and E. Stiefel (1998). "BIOCHEMISTRY: Biological Hydrogen Production: Not So Elementary." Science 282(5395): 1842.
Allison, C. and G. Macfarlane (1990). "Regulation of protease production in Clostridium sporogenes." Applied and Environmental Microbiology 56(11): 3485.
Angenent, L. T., K. Karim, et al. (2004). "Production of bioenergy and biochemicals from industrial and agricultural wastewater." Trends in Biotechnology 22(9): 477-485.
Asada, Y. and J. Miyake (1999). "Photobiological hydrogen production." Journal of Bioscience and Bioengineering 88(1): 1-6.
Balows, A. (1992). The Prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, New Yorkx; iiipringer-Verlag.
Baronofsky, J., W. Schreurs, et al. (1984). "Uncoupling by Acetic Acid Limits Growth of and Acetogenesis by Clostridium thermoaceticum." Applied and Environmental Microbiology 48(6): 1134-1139.
Brosseau, J. and J. Zajic (2007). "Hydrogen-gas production with Citrobacter intermedim and Clostridium pasteurianum." Journal of Chemical Technology and Biotechnology 32(3): 496-502.
Bryant, M. and L. Burkey (1956). "The characteristics of lactate-fermenting sporeforming anaerobes from silage." Journal of Bacteriology 71(1): 43.
Buchanan, B. and D. Arnon (1970). "Ferredoxins: chemistry and function in photosynthesis, nitrogen fixation, and fermentative metabolism." Advances in enzymology and related areas of molecular biology 33: 119.
Çakır, T., K. Y. Arga, et al. (2004). "Flux analysis of recombinant Saccharomyces cerevisiae YPB-G utilizing starch for optimal ethanol production." Process Biochemistry 39(12): 2097-2108.
Chen, C. C. and C. Y. Lin (2001). "Start-up of Anaerobic Hydrogen Producing Reactors Seeded with Sewage Sludge." Acta Biotechnologica 21(4): 371-379.
Cord-Ruwisch, R., H. Seitz, et al. (1988). "The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor." Archives of Microbiology 149(4): 350-357.
Crabbendam, P. M., O. M. Neijssel, et al. (1985). "Metabolic and energetic aspects of the growth of Clostridium butyricum on glucose in chemostat culture." Archives of Microbiology 142(4): 375-382.
Dabrock, B., H. Bahl, et al. (1992). "Parameters affecting solvent production by Clostridium pasteurianum." Applied and Environmental Microbiology 58(4): 1233-1239.
Das, D. and T. N. V. glu (2001). "Hydrogen production by biological processes: a survey of literature." International Journal of Hydrogen Energy 26(1): 13-28.
Desvaux, M., E. Guedon, et al. (2000). "Cellulose Catabolism by Clostridium cellulolyticum Growing in Batch Culture on Defined Medium." Applied and Environmental Microbiology 66(6): 2461-2470.
Desvaux, M., E. Guedon, et al. (2001). "Metabolic flux in cellulose batch and cellulose-fed continuous cultures of Clostridium cellulolyticum in response to acidic environment." Microbiology 147(6): 1461.
Diez-Gonzalez, F., J. Russell, et al. (1995). "The role of an NAD-independent lactate dehydrogenase and acetate in the utilization of lactate by Clostridium acetobutylicum strain P262." Archives of Microbiology 164(1): 36-42.
Ereci ska, M., T. Kula, et al. (1978). "Regulation of energy metabolism: evidence against a primary role of adenine mucleotide translocase." FEBS letters 87(1): 139.
Erickson, L. and D. Fung (1988). Handbook on anaerobic fermentations, Marcel Dekker New York.
Ezeji, T. C., N. Qureshi, et al. (2004). "Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping." Applied Microbiology and Biotechnology 63(6): 653-658.
Fabiano, B. and P. Perego (2002). "Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes." International Journal of Hydrogen Energy 27(2): 149-156.
Gibson, A., R. Ellis-Brownlee, et al. (2000). "The effect of 100% CO2 on the growth of nonproteolytic Clostridium botulinum at chill temperatures." International journal of food microbiology 54(1-2): 39-48.
Girbal, L., J. Orlygsson, et al. (1997). "Why does Clostridium acetireducens not use interspecies hydrogen transfer for growth on leucine?" Current Microbiology 35(3): 155-160.
Girbal, L. and P. Soucaille (1994). "Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool." Journal of Bacteriology 176(21): 6433.
Girbal, L. and P. Soucaille (1998). "Regulation of solvent production in Clostridium acetobutylicum." Trends in Biotechnology 16(1): 11-16.
Gottschalk, G. (1986). Bacterial metabolism, Springer.
Gottwald, M. and G. Gottschalk (1985). "The internal pH of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation." Archives of Microbiology 143(1): 42-46.
Guedon, E., S. Payot, et al. (1999). "Carbon and electron flow in Clostridium cellulolyticum grown in chemostat culture on synthetic medium." Journal of Bacteriology 181(10): 3262.
Harold, F. (1972). "Conservation and transformation of energy by bacterial membranes." Microbiology and Molecular Biology Reviews 36(2): 172.
Herrero, A., R. Gomez, et al. (1985). "Growth inhibition of Clostridium thermocellum by carboxylic acids: a mechanism based on uncoupling by weak acids." Applied Microbiology and Biotechnology 22(1): 53-62.
Heyndrickx, M., P. De Vos, et al. (2008). "Fermentation characteristics of Clostridium pasteurianum LMG 3285 grown on glucose and mannitol." Journal of Applied Microbiology 70(1): 52-58.
Hood, J. (1948). "Measurement and control of sewage treatment process efficiency by oxidation-reduction potential." Sewage Works Journal: 640-650.
Husemann, M. and E. Papoutsakis (1988). "So Ive n t og en esis in Clostridium Acetobutylicum Fermentations Related to Carboxylic Acid and Proton Concentrations." Biotechnology and bioengineering 32: 843-852.
Husemann, M. and E. Papoutsakis (1989). "Comparison between in vivo and in vitro enzyme activities in continuous and batch fermentations of Clostridium acetobutylicum." Applied Microbiology and Biotechnology 30(6): 585-595.
Kalia, V., S. Jain, et al. (1994). "Frementation of biowaste to H2 by Bacillus licheniformis." World journal of Microbiology and Biotechnology 10(2): 224-227.
Kashket, E. (1982). "Stoichiometry of the proton-ATPase of growing and resting, aerobic Escherichia coli." Biochemistry 21(22): 5534-5538.
Kataoka, N., A. Miya, et al. (1997). "Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria." Water Science and Technology 36(6): 41-48.
Kell, D., M. Peck, et al. (1981). "On the permeability to weak acids and bases of the cytoplasmic membrane of." Biochemical and Biophysical Research Communications 99(1): 81-88.
Khanal, S. K., W.-H. Chen, et al. (2004). "Biological hydrogen production: effects of pH and intermediate products." International Journal of Hydrogen Energy 29(11): 1123-1131.
Kim, D.-H., S.-K. Han, et al. (2006). "Effect of gas sparging on continuous fermentative hydrogen production." International Journal of Hydrogen Energy 31(15): 2158-2169.
Krulwich, T. and A. Guffanti (1983). "Physiology of acidophilic and alkalophilic bacteria." Adv Microb Physiol 24: 173-214.
Lambert, A., J. Smith, et al. (1991). "Shelf life extension and microbiological safety of fresh meat—a review." Food Microbiology 8(4): 267-297.
Lay, J. (2000). "Modeling and optimization of anaerobic digested sludge converting starch to hydrogen." Biotechnology and bioengineering 68(3): 269-278.
Lee, H., R. Krajmalinik-Brown, et al. (2009). "An electron-flow model can predict complex redox reactions in mixed-culture fermentative BioH2: Microbial ecology evidence." Biotechnology and bioengineering 104(4): 687-697.
Lee, H., M. Salerno, et al. (2008). "Thermodynamic evaluation on H2 production in glucose fermentation." Environmental Science & Technology 42(7): 2401-2407.
Lee, S. Y. and E. T. Papoutsakis (1999). Molecular Regulation and Metabolic Engineering of Solvent Production by Clostridium acetobutylicum, CRC Press.
Lin, C. and C. Lay (2004). "Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora." International Journal of Hydrogen Energy 29(1): 41-45.
Lovitt, R., G. Shen, et al. (1988). "Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum." Journal of Bacteriology 170(6): 2809.
Maloney, P. (1983). "Relationship between phosphorylation potential and electrochemical H+ gradient during glycolysis in Streptococcus lactis." Journal of Bacteriology 153(3): 1461.
McCarty, P. (1964). "Anaerobic waste treatment fundamentals." Public works 95(9): 107-112.
McInerney, M. (1988). "Anaerobic hydrolysis and fermentation of fats and proteins." Biology of anaerobic microorganisms: 373–417.
Meyer, C. and E. Papoutsakis (1989). "Increased levels of ATP and NADH are associated with increased solvent production in continuous cultures of Clostridium acetobutylicum." Applied Microbiology and Biotechnology 30(5): 450-459.
Michel-Savin, D., R. Marchal, et al. (1990). "Butyrate production in continuous culture of Clostridium tyrobutyricum: effect of end-product inhibition." Applied Microbiology and Biotechnology 33(2): 127-131.
Nandi, R. and S. Sengupta (1998). "Microbial Production of Hydrogen: An Overview." Critical Reviews in Microbiology 24(1): 61-84.
Neidhardt, F., J. Ingraham, et al. (1990). Physiology of the bacterial cell: a molecular approach, Sinauer Sunderland, MA, USA.
Nochur, S., A. Demain, et al. (1992). "Carbohydrate utilization by Clostridium thermocellum: Importance of internal pH in regulating growth." Enzyme and Microbial Technology 14(5): 338-349.
Onodera, H., T. Miyahara, et al. (1999). "Influence of ammonia concentration on hydrogen transformation of sucrose." Asian Waterqual 99: 1139-1144.
Otto, R., B. Klont, et al. (1985). "The relation between phosphate potential and growth rate of Streptococcus cremoris." Archives of Microbiology 142(1): 97-100.
Owen, W., D. Stuckey, et al. (1979). "Bioassay for monitoring biochemical methane potential and anaerobic toxicity." Water Research 13(6): 485-492.
Padan, E., D. Zilberstein, et al. (1976). "The Proton Electrochemical Gradient in Escherichia coli Cells." European Journal of Biochemistry 63(2): 533-541.
Papoutsakis, E. (1984). "Equations and calculations for fermentations of butyric acid bacteria." Biotechnology and bioengineering 26(2): 174-187.
Payne, M., A. Chapman, et al. (1993). "Evidence for an [Fe]-type hydrogenase in the parasitic protozoan Trichomonas vaginalis." FEBS letters 317(1-2): 101-104.
Rachman, M., Y. Nakashimada, et al. (1998). "Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor." Applied Microbiology and Biotechnology 49(4): 450-454.
Rodriguez, J., R. Kleerebezem, et al. (2005). "Modeling product formation in anaerobic mixed culture fermentations." Biotechnology and bioengineering 93(3): 592-606.
Salerno, M., W. Park, et al. (2006). "Inhibition of biohydrogen production by ammonia." Water Research 40(6): 1167-1172.
Schwartz, R. and F. Keller (1982). "Acetic Acid Production by Clostridium thermoaceticum in pH-Controlled Batch Fermentations at Acidic pH." Applied and Environmental Microbiology 43(6): 1385-1392.
Sridhar, J. and M. Eiteman (2001). "Metabolic flux analysis of Clostridium thermosuccinogenes." Applied biochemistry and biotechnology 94(1): 51-69.
Taguchi, F., N. Mizukami, et al. (1995). "Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. strain No. 2." Canadian Journal of Microbiology/Revue Canadienne de Microbiologie 41(6): 536-540.
Tanisho, S. and Y. Ishiwata (1994). "Continuous hydrogen production from molasses by the bacterium Enterobacter aerogenes." International Journal of Hydrogen Energy 19(10): 807-812.
Tanisho, S., M. Kuromoto, et al. (1998). "Effect of CO2 removal on hydrogen production by fermentation." International Journal of Hydrogen Energy 23(7): 559-563.
Temudo, M., R. Kleerebezem, et al. (2007). "Influence of the pH on (open) mixed culture fermentation of glucose: A chemostat study." Biotechnology and bioengineering 98(1): 69-79.
Terracciano, J., W. Schreurs, et al. (1987). "Membrane H+ Conductance of Clostridium thermoaceticum and Clostridium acetobutylicum: Evidence for Electrogenic Na+/H+ Antiport in Clostridium thermoaceticum." Applied and Environmental Microbiology 53(4): 782-786.
Thauer, R., K. Jungermann, et al. (1977). "Energy conservation in chemotrophic anaerobic bacteria." Microbiology and Molecular Biology Reviews 41(1): 100-180.
Thauer, R. and J. Morris (1984). Metabolism of chemotrophic anaerobes: Old views and new aspects.
Ueno, Y., S. Haruta, et al. (2001). "Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost." Applied Microbiology and Biotechnology 57(4): 555-562.
van Andel, J. G., G. R. Zoutberg, et al. (1985). "Glucose fermentation by Clostridium butyricum grown under a self generated gas atmosphere in chemostat culture." Applied Microbiology and Biotechnology 23(1): 21-26.
Van Ginkel, S. and B. Logan (2005). "Increased biological hydrogen production with reduced organic loading." Water Research 39(16): 3819-3826.
Van Ginkel, S. and B. Logan (2005). "Inhibition of Biohydrogen Production by Undissociated Acetic and Butyric Acids." Environmental Science & Technology 39(23): 9351-9356.
van Niel, E. W. J., P. A. M. Claassen, et al. (2003). "Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus." Biotechnology and Bioengineering 81(3): 255-262.
Vasconcelos, I., L. Girbal, et al. (1994). "Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol." Journal of Bacteriology 176(5): 1443.
Vesell, E. and K. Yielding (1966). "Effects of pH, ionic strength, and metabolic intermediates on the rates of heat inactivation of lactate dehydrogenase isozymes." Proceedings of the National Academy of Sciences of the United States of America 56(4): 1317.
Wang, G. and D. I. C. Wang (1984). "Elucidation of Growth Inhibition and Acetic Acid Production by Clostridium thermoaceticum." APPLIED AND ENVIRONMENTAL MICROBIOLOGY 47(2): 294-298.
Yokoi, H., T. Tokushige, et al. (1998). "H2 production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes." Biotechnology Letters 20(2): 143-147.
Zhu, Y. and S.-T. Yang (2004). "Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum." Journal of Biotechnology 110(2): 143-157.
Zoetemeyer, R., A. Matthijsen, et al. (1982). "Product inhibition in the acid forming stage of the anaerobic digestion process." Water Research 16(5): 633-639.
白明德、鄭幸雄 (2002). 厭氧氫發酵程序中氫分壓的影響與重要性. 第27屆廢水研討會.
任維傑 (2006). 探討厭氧產氫純菌Clostridium在不同pH 下之反應動力機制. 環境工程學系, 國立成功大學. 碩士論文.
張仕旻 (2001). 利用薄膜反應器於高溫厭氧產氫生物程序之研究. 環境工程學系, 國立成功大學.
梁德明, 鄭幸雄, et al. (2002). Behavior of gas separation for submersed hollow fibers installed in an anaerobic hydrogen fermentor. 第27屆廢水研討會論文集.
梁德明、鄭幸雄 (2002). Behavior of gas separation for submersed hollow fibers installed in an anaerobic hydrogen fermentor. 第27屆廢水研討會論文集.
劉怡君 (2006). Clostridium tyrobutyricum 在不同水力停留時間下之代謝表現與產氫行為之研究. 環境工程學系, 國立成功大學. 碩士論文.
鄭幸雄, 白明德, et al. (2003). 厭氧產氫菌分解高分子碳水化合物及peptone之產氫機制. 第28屆廢水研討會論文集.
鄭幸雄, 白明德, et al. (2003). 厭氧產氫菌分解蛋白質之機制探討. 第28屆廢水研討會論文集.
鄭幸雄, 林秋裕, et al. (2003). 複合基質生物產氫機制及程序應用之整合研究-2002. 第28屆廢水研討會論文集.