| 研究生: |
陳文正 Chen, Wen-Cheng |
|---|---|
| 論文名稱: |
氫氧基磷灰石複合骨水泥基本性質及植入結果研究 Basic Properties and In Vivo Studies of Calcium Phosphate Composite Cement |
| 指導教授: |
朱建平
Ju, Chien-Ping 陳瑾惠 Chern Lin, Jiin-Huey |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 182 |
| 中文關鍵詞: | 生醫材料 、生物可吸收性 、磷酸鈣正鹽類 、鈣磷系骨水泥 、氫氧基磷灰石 |
| 外文關鍵詞: | bioresorbable, biomaterials, calcium othophosphate, calcium phosphate cement, hydroxyapatite |
| 相關次數: | 點閱:189 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究內容主要是針對鈣磷系骨水泥機械性質、微結構、動物實驗及臨床反應做一系列的探討,本實驗室已發展出非常適合作為生醫植入材的骨水泥,從結果發現nd-CPC在相同的條件下尤其是在反應初期階段比起c-CPC顯示有較為緻密的型態,具較高的磷灰石生成速率,nd-CPC在硬化及浸泡於模擬人工體液過程表現較高的強度。
反應過程中較後的階段大量Ca/P比接近HA的磷灰石晶體/鬚晶生成並有效的連接DCPA顆粒,藉著這些磷灰石晶體/鬚晶橋接大顆的TTCP顆粒並將其位置固定住,此時CPC達到硬化,顯微結構研究結果發現CPC通常在經過20到40分鐘反應後浸泡於模擬人工體液就不會溶解是因為大量鬚晶的生成將粉末互相連結。
為了使nd-CPC更為實用,本實驗室以熱處理方式提供了一個熱處理方式(例如160-180℃處理1小時),此方式可以大幅度的改善以TTCP/DCPA為主要材料的鈣磷系骨水泥工作及硬化時間。n-CPC在動物植入方面具有相當高的吸收速率,植入兔子大腿骨24週的吸收率約50%,並且在牙科的臨床方面初步結果顯示並無不良反應有很好的組織相容性。
總體而言,鈣磷系骨水泥nd-CPC是新一代生醫材料相當好的選擇。
The present work is a study of the mechanical properties, microstructure, animal and clinical study of a series of non-decay calcium phosphate cements. The author’s lab has developed a new calcium phosphate cement and showed excellent properties as a bone substitutes. From the results revealed that the apatite formation rate of nd-CPC was higher than that of c-CPC, especially at early stage. The nd-CPC showed a denser morphology, higher strength than c-CPC both during setting and after immersion in Hanks’ solution.
During the later stages of reaction, the extensive growth of apatite crystals/whiskers, with a Ca/P ratio very close to that of HA, effectively linked particles together. It is suggested that, when the particles are locked in place by the bridging apatite crystals/whiskers, the CPC is set and would not dissolve when immersed in Hanks' solution after 20-40 min of reaction.
For practical used, we provide a simple heat treatment method that can largely modify the working/setting time of TTCP/DCPA-derived CPC without using additives or sacrificing its strength. It can be seen that the nd-CPC cement can induce the growth of the natural bone, the resorb ratio was about 50% after 24 weeks implanted. From the result of nd-CPC clinical study applied in dental, no side reaction revealed nd-CPC has good biocompatibility. The nd-CPC has great potential for use as implant material.
Agins HJ, Alcock NW, Bansal M, Salvati EA, Jr. Wilson PD, Pellicci PM, Bullough PG. Metallic wear in failed titanium-alloy total hip replacements. A histological and quantitative analysis. J Bone Joint Surg 1988;70A:347-356.
Albee F, Morrison H. Studies in bone growth. Annals of Surg 1920;71:32-38.
Andrianjatovo H, Lemaître J. Effects des polysaccharides sur les propriétés de ciments de phosphate monocalcique/phosphate tricalcique b. Innov Tech Biol Med 1995;16:140-147.
Bai B, Jazrawi L, Kummer F, Spivak J. The use of an injectable, biodegradable calcium phosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae and management of vertebral compression fractures. Spine 1999;24:1521-1526.
Barkoš D, Soldán M, Hernández-Fuentes I. Hydroxyapatite-collagen-hyaluronic acid composite. Biomaterials 1999;20:191-195.
Bermúez O, Boltong MG, Driessens FCM, Ginebra MP, Fernández E, Planell JA. Chloride- and alkali-containing calcium phosphates as basic materials to prepare calcium phosphate cements. Biomaterials 1994;15:1019-1023.
Beruto DT, Mezzasalma SA, Capurro M, Botter R, Cirillo P. Use ofα-tricalcium phosphate (TCP) as powders and as an aqueous dispersion to modify processing, microstructure, and mechanical properties of polymethylmethacrylate (PMMA) bone cements and to produce bone-substitute compounds. J Biomed Mater Res 2000;49:498-505.
Binstock A, Posner AS. Calculation of the x-ray intensities from arrays of small crystallites of hydroxyapatite. Arch Biochem Biophys 1988;124:604-607.
Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury Int J Care Injured 2000;31:S-D37-47.
Brömer H, Pfeil E, Kos HH. German Patent No. 2326100 1973.
Brown WE, Epstein EF. Crystallography of tetracalcium phosphate. Journal of Research of the National Bureau of Standards- A Physics and Chemistry 1965;6:69A.
Brown WE, Chow LC. A new calcium phosphate setting cement. J Dent Res Abs 1983;207:62-672.
Brown WE, Chow LC. Dental resptorative cement pastes. US Patent No. 4518430 1985.
Brown WE, Chow LC. A new calcium phosphate, water-setting cement, in Cements Research Progress 1986, Brown PW, editor. American Ceramic Society, Westerville OH. 1987;352-379.
Brown PW, Fulmer M. Kinetics of hydroxyapatite formation at low temperature. J Am Ceram Soc 1991;74:934-940.
Buckwalter JA, Cruess RL, In:Rockwood CA, Green DP, Bucholz RW, eds. Fractures in Adults (3rd edn), Philadelphia: J B Lippincott 1991;181-222.
Callaghan JJ. Current concerts review: The clinical results and basic science of total hip arthroplasty with porous-coated prostheses. J Bone Joint Surg 1993;75A:299-310.
Chakkalakal DA, Mashoof AA, Novak J, Strates BS, McGuire MH. Mineralization and pH relationships in healing skeletal defects grafted with demineralized bone matrix. J Biomed Mater Res 1994;28:1439-1443.
Chohayeb AA, Chow LC, Tsaknins PJ. Evaluation of calcium phosphate as a root canal sealer-filler material. J Endodont 1987;13:384-387.
Chen WC, Chern Lin JH, Ju CP. Transmission electron microscopic study on setting mechanism of TTCP/DCPA-based calcium phosphate cement. J Biomed Mater Res 2002, accept for publication.
Chow LC. Calcium phosphate materials: reactor response. Adv Dent Res 1988;2:19:181-184.
Chow LC, Takagi S, Ishikawa K. in Hydroxyapatite and related materials. Brown PW, editor. Florida: CRC Press 1994;127.
Chow LC, Hirayama S, Takagi S, Parry E. Diametral tensile strength and compressive strength of a calcium phosphate cement: Effect of applied pressure. J Biomed Mater Res (Appl Biomater) 2000;53:511-517 .
Chow LC, Takagi S. A natural bone cement-a laboratory novelty led to the development of revolutionary new biomaterials. Journal of research of the national institute of standards and technology 2001;106:1029-1033.
Costantino PD, Friedman CD, Jones K, Chow LC, Pelzer HJ, Sisson GA. Hydroxyapatite cement I. Basic chemistry and histologic properties. Arch Otolaryngol Head Neck Surg 1991;117:379-384.
Costantz B, Ison I, Fulmer M et al. Skeletal repair by in situ formation of the mineral phase of bone. Science 1995;267:1796-1799.
Costantz B, Barr B, Ison I et al. Histological, chemical, and crystallographic analysis of four calcium phosphate cements in different rabbit osseous sites. J Biomed Mater Res (Appl Biomater) 1998;43:451-461.
de Groot K, Klein CPAT, Wolke JGC, de Blieck-Hogervorst JMA. Chemistry of Calcium phosphate bioceramics. In: Handbook of Bioactive Ceramics Vol.II. edited by Yamamuro T, Hench LL. and Wilson J. CRC Press, Boca Raton, FL 1990;3-16.
de Groot K. Medical applications of calcium phosphate bioceramics. The Centennial Memorial Issue of The Ceramic Society of Japan 1991;99:943-953.
de Lange GL and Donath K. Interface between bone tissue and implants of solid hydroxyapatite or hydroxyapatite-coated titanium implants. Biomaterials 1989;10:121-125.
Denissen H. Dental root implants of apatite ceramics. Experimental investigations and clinical use of dental root implants made of apatite ceramics. Ph. D. Thesis, Vrije Universiteit te Amsterdam 1979.
Driessens FCM. Is the solubility product of synthetic calcium phosphates a good predicator for their biodegradability? In: de Width G
Driessens FCM. and Verbeck RMH. Biominerals, CRC Press, Boca Ration, Boston 1990;37-59.
Driessens FCM, Boltong MG, Bermúdez O, Planell JA, Ginebra MP, Fernández E. Effective formulations for the preparation of calcium phosphate bone cements. J Mater Sci: Mater in Med 1994;5:164-170.
Eggli PS, Muller W, Schenk RK. Porous hydroxyapatite and tricalcium phosphate ceramic cylinders with two different pore size ranges implanted in the cancellous bone of rabbit. Clin Orthop Rel Res 1988;232:127-138.
Eppley B. Development and clinical results of synthetic calcium phosphate materials in craniomaxillofacial surgery. Concepts and clinical applications of ionic cements Sept 8, 1999, Arcahon, France.
Frank BB, Ulrich J, Wilfried S. Mechanisms and structure of the bond between bone and hydroxyapatite ceramics. J Biomed Mat Res 1993;27:1047-1055.
Frankenburg E, Goldstein S, Bauer T, Harris S, Poser R. Biomechanical and histological evaluation of a calcium phosphate cement. J Bone Joint Surg 1998;80-A[8]:1112-1124.
Frayssinet P, Gineste L, Conte P, Fages J, Rouquet N. Short-term implantation effects of a DCPD-based calcium phosphate cement. Biomaterials 1998;19:971-977.
Friedman CD, Costantino PD, Jones K, Chow LC, Pelzer HJ, Sisson GA. Hydroxyapatite cement II. Obliteration and reconstruction of the cat frontal sinus. Arch Otolaryngol Head Neck Surg 1991;117:385-389.
Friedman RJ, Black J, Galante JO, Jacobs JJ, Skinner HB. Current concepts in orthopaedic biomaterials and implant fixation. J Bone Joint Surg 1993;75A:1086-1109.
Fridman C, Costantino P, Takagi S, Chow LC. BoneSource hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res (Appl Biomater) 1998;43:428-432.
Fukase Y, Eanes ED, Takagi S, Chow LC, Brown WE. Setting reaction and compressive strengths of calcium phosphate cements. J Dent Res 1990;12:1852-1856.
Galley O, Michaud P, Medjoubi E, Lacout J, Rodriguez F. Calcium phosphate cement for root canal filling. In: Vicenzzini P. ed. Materials in clinical applications. 1995:51-58.
Getter L, Bhaskar S, Cutright D, Perez B, Brady J, Driskell T, O’Hara M. Three biodegradable calcium phosphate slurry implants in bone. J Oral Surg 1972;30:263-268.
Goodman S, Bauer T, Carter D et al. Norian SRS cement augmentation in hip fracture treatment. Clin Orthop Rel Res 1998;348:42-50.
Gruen TA, McNeice GM. and Amstutz HC. Modes of failure of cemented stem-type femoral component. Clin Orthop 1979;141:17-21.
Hamanishi C, Kitamoto K, Ohura K, Tanaka S, Doi Y. Self-setting, bioactive, and biodegradable TTCP-DCPD apatite cement. J Biomed Mater Res 1996;32:383-389.
Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanism at the interface of ceramic prosthetic materials. J Biomd Mater Res Symp 1971;2:117-141.
Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc 1991;74:1487-1510.
Higashi S et al. Polymer-hydroxyapatite composite for biodegradable bone fillers. Biomaterials 1986;7: 183-187.
Hollinger JO. Preliminary report on the osteogenic potential of a biodegra- dable copolymer of polyactide (PLA) and polyglycolide(PGA). J Biomed Mater Res 1983;17: 71-82.
Hong YC, Wang JT, Hong CY, Brown WE, Chow LC. The periapical tissue reactions to a calcium phosphate cement in the teeth of the monkeys. J Biomed Mater Res 1991;25:485-498.
Huiskes R. The various stress patterns of press-fit, ingrowth, and cemented femoral stems. Clin Orthop 1990;261:27-38.
Hulbert SF. Biomaterials-the case for ceramics. National Conference on Use of Ceramics in Surgical Implants. Clemson University Press 1969.
Hulbert SF, Hench LL, Forbers D, Bowman LS. History of bioceramics. Ceram Internat 1982;8:131-140.
Hulbert SF, Bokros JC, Hench LL, Wilson J, Heimke G. Ceramics in clinical applications, past, present and future. In: Ceramics in Clinical Applications. edited by Vincenzini P. Elsevier, Amsterdam-oxford-New York-Tokyo 1987;3-27
Hulbert SF. Bioactive ceramic-bone interface, Hench LL. Bioactive glasses and glass-ceramic: a perspective, and Kokubo T. Bonding mechanism of bioactive glass-ceramic A-W to living bone. In: Handbook of Bioactive Ceramics Vol.I. edited by Yamamuro T, Hench LL. and Wilson J. CRC Press, Boca Raton, FL 1990;3-6;7-24;41-50.
Ishikawa K, Miyamoto Y, Kon M, Nagayama M, Asaoka K. Non-decay type fast-setting calcium phosphate cement: composite with sodium alginate. Biomaterials 1995;16:527-532.
Ishikawa K, Asaoka K. Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement. J Biomed Mater Res 1995;29:1537-1543.
Ishikawa K, Miyamoto Y, Takechi M, Ueyama Y, Suzuki K, Nagayama M, Matsumura T. Effects of neutral sodium hydrogen phosphate on setting reaction and mechanical strength of hydroxyapatite putty. J Biomed Mater Res 1999;44:322-329.
Jarcho M, Kay J, Gumaer K, Doremus R, Drobeck H. Tissue, cellular and subcellular events at a bone-ceramic hydroxyapatite interface. J Bioengineering 1977;1:79-92.
Joint Committee on Powder Diffraction Standards. Powder diffraction file. Swarthmore PA. International Center for Diffraction Data 1986.
Khairoun I, Boltong MG, Driessens FCM, Planell JA. Effect of calcium carbonate on clinical compliance of apatitic calcium phopshate cement. J Biomed Mater Res (Appl Biomater) 1997;38:356-360.
Khairoun I, Driessens FCM, Boltong MG, Planell JA, Wenz R. Addition of cohesion promoters to calcium phosphate cements. Biomaterials 1999;20:393-398.
Klawitter JJ, Hulbert SF, Talbert CD, Fitts CT. Artifical bones, in Use of ceramics in Surgical Implants. Edited by Hulbert SF and Young FA. Gordon and Breach Science Publishers, New York 1969.
Knaack D, Goad MEP, Aiolova M, Rey C, Tofighi A, Chakravarthy P, Lee DD. Resorbable calcium phosphate bone substitute. J Biomed Mater Res 1998;43:399-409.
Köster K, Karbe E, Kramer H, Heide H, König R. Experimenteller knochenersatz durch resorbierbare calcium phosphate-keramik. Langenbecks Arch Chir 1976;341:77-86.
Kokubo T, Shigematsu M, Naashima Y, Tashiro M, Nakamura T, Yamamuro T, Higshi S. Apatite and wallastonite-containing glass-ceramics for prosthetic application. Bull Inst Chem Res, Kyoto Univ 1982;60:260-268.
Kokubo T, Ito S, Shigematsu M, Sakka S, Yamamuro T. Mechanical properties of new type of apatite-containing glass-ceramics for prosthetic application. J Mater Sci 1985;20:2001-2004.
Kokubo T. Recent progress in glass-based materials for biomedical applications. The Centennial Memorial Issue of The Ceramic Society of Japan 1991;99:965-973.
Kotani S, Fujita Y, Kitsugi T, Nakamura T, Yamamuro T, Ohtsuki C, Kokubo T. Bone bonding mechanism of β-tricalcium phosphate. J Biomed Mater Res 1991;25:1303-1315.
Kurashina K, Kurita H, Kotani A, Takeuchi H, Hirano M. In vivo study of a calcium phosphate cement consisting of α-tricalcium phosphate/ dicalcium phosphate dibasic/ tetracalcium phosphate monoxide. Biomaterials 1997;18:147-151.
Kurashina K, Kurita H, Hirano M, Kotani A, Klein C, de Groot K. In vivo study of calcium phosphate cements: implantation of an α-tricalcium phosphate/ dicalcium phosphate dibasic/ tetracalcium phosphate monoxide cement paste. Biomaterials 1997;18:539-543.
Lautenschlager EP. and Monaghan P. Titanium and titanium alloys as dental materials. Internat Dent 1993;43:245-253.
Lee WH and Hubert SF. Cardiovascular implants-state of the art and potential for bioceramics, in Use of Ceramics in Surgical Implants edited by Hulbert SF and Young FA, Gordon and Breach Science Publishers, New York 1969.
LeGeros RZ. Biological and synthetic apatites.edit by P.W. Brown, CRC Press, Florida 1994;3.
Lin FH. and Hon MH. A study on the bioglass ceramics in the Na2O-CaO-SiO2-P2O5 system. J Mater Sci 1989;23:4295-4299.
Liu C, Shen W, Gu Y, Hu L. Mechanism of the hardening process for a hydroxyapatite cement. J Biomed Mater Res 1997;35:75-80.
Mandai Y, Shimada S, Sugihara F, Akamatsu S, Kushida I, Yamada M, Toyooka K, Ootsuchi T, Rakugi M. Hardening material containing tetracalcium phosphate-citric acid-malonic acid. J Jpn Dent Mater 1987;6:403-410.
Mears DC. Metals in medicine and surgery. International Metals Reviews 1977;June:119-153.
Memelstein L, Chow LC, Friedman C, Crisco J. The reinforcement of cancellous bone screws with calcium phosphate cement. J Orthop Trauma 1996;10:15-20.
Memelstein L, McLain R, Yerbi S. Reinforcement of thoracolumbar burst fractures with calcium phosphate cement. Spine 1998;23:664-671.
Michael JY, Richard GP, Wilson CH, Robert L, Antonios GM. Evolution of bone transplantation molecular, cellular and tissue strategies to engineer human bone. Biomaterials 1996;17:175-185.
Miyamoto Y, Ishikawa K, Fukao H, Sawada M, Nagayama M, Kon M, Asaoka K. In vivo setting behaviour of fast-setting calcium phosphate. Biomaterials 1995;16:855-860.
Miyamoto Y, Ishikawa K, Takechi M, Toh T, Yoshida Y, Nagayama M, Kon M, Asaoka K. Tissue response to fast-setting calcium phosphate cement in bone. J Biomed Mater Res 1997;37:457-464.
Miyamoto Y, Ishikawa K, Takechi M et al. Histological and compositional evaluations of three types of calcium phosphate cements when implanted in subcutaneous tissue immediately after mixing. J Biomed Mater Res Appl Biomater 1999;48:36-42.
Miyamoto Y, Toh T, Ishikawa K, Yuasa T, Nagayama M, Suzuki K. Effect of added NaHCO3 on the basic properties of apatite cement. J Biomed Mater Res 2001;54:311-319.
Mongiorgi R and Krajewski A. Mineralogical alterations in osteoporotic bone tissue structure. Biomaterials, 1981;2:147-151.
Moore D, Maitra R, Farjo L, Graziano G, Goldstein S. Restoration of pedicle screw fixation with an in situ setting calcium phosphate cement. Spine; 1997;22:1696-1705.
Oguchi O, Ishikawa K, Mizoue K, Seto K, Eguchi G. Long-term histological evaluation of hydroxyapatite ceramics in humans. Biomaterials 1995;16:33-38.
Park JB. Biomaterials Science and Engineering. Plenum Press, New York and London 1985.
Patrick F, Laurent G, Philippe C, Jacques F, Nicole R. Short-term implantation effects of a DCPD-based calcium phosphate cement. Biomaterials 1998;19:971-977.
Peelen J, Rejda B, Vermeiden J, de Groot K. Sintered tricalcium phosphate as bioceramic. Science of Ceramics 1977;9:226-236.
Peterson CD, Miles JS, Solomans C, Predicki PK, Stephens JS. Union between bone implants of open pore ceramic and stainless steel: a histologic study. J Bone Joint Surg 1968;51A:805.
Pilliar PM, Cameron HU, Binnington AG, Szivek JA. Bone ingrowth and stress shielding with a porous surface coated fracture fixation plated. J Biomed Mater Res 1979;13:799-810.
Posset U, Löcklin E, Thull R, Kiefer W. Vibrational spectroscopic study of tetrecalcium phosphate in pure polycrystalline form and as a constituent of a self-setting bone cement. J Biomed Mater Res 1998;40:640-645.
Radin SR, Ducheyne P. The effect of calcium phosphate ceramic composite and structure on in vitro behaviorⅡ Precipitation. J Biomed Mat Res 1993;27:35-45.
Ravaglioli A. and Krajewski A. Bioceramics: Materials, Properties, Applications. Chapman & Hall Press, London 1992;44-45.
Ray R, Degge J, Gloyd P, Mooney G. Bone regeneration. J Bone Joint Surg 1952;34A:638-647.
Rohanizadeh R, Padrines M, Bouler JM, Couchourel D, Fortun Y, Daculsi G. Apatite precipitation after incubation of biphasic calcium-phosphate ceramic in various solutions: Influence of seed species and proteins. J Biomed Mater Res 1998;42:530-539.
Rovira A, Bareille R, Lopez I, Rouais F, Bordenave L, Rey C, Rabaud M. Preliminary report on a new composite material made of calcium phosphate, elastin peptides, and collagens. J Mater Sci Mater Med 1993;4:372-380.
Roy D, Linnehan S. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 1974;247:220-222.
Schmitz JP, Hollinger JO, Milam SB. Reconstruction of bone using calcium phosphate bone cements: a critical review. J Oral Maxillofac Surg 1999;57:1122-1126.
Soballe K. Hydroxyapatite ceramic coating for bone implant fixation. ACTA Orthopaed Scandin Supplem 1993;64:1-58.
Standard specification for Acrylic bone cement. American Society For Testing & Materials (ASTM) F 451-99a.
Stanewich C, Swiontkowski M, Tencer A, Yetkinler D, Poser R. Augmentation of femoral neck fracture fixation with an injectable calcium-phosphate bone mineral cement. J Orthopaedic Res 1996;14:786-793.
Sugawara A, Nishiyama M, Kusama K, Moro I, Nishimura S, Kudo I, Chow LC, Takagi S. Histopathological reaction of calcium phosphate cement. Dent Mater J 1992;11:11-16.
Takagi S, Chow LC, Ishikawa K. Formation of hydroxyapatite in new calcium phosphate cement. Biomaterials 1998;19:1593-1599.
Takechi M, Miyamoto Y, Ishikawa K, Nagayama M, Kon M, Asaoka K, Suzuki K. Effects of added antibiotics on the basic properties of anti-washout- type fast-setting calcium phosphate cement. J Biomed Mater Res 1998;39:308-316.
Takezawa Y, Doi Y, Shibata S, Wakamatsu N, Kamemizu H, Goto T, Iijima M, Moriwaki Y, Uno K, Kubo F, Haeuchi Y. Self-setting apatite accelerator, Hydroxyapatite as setting accelerator, J Jpn Soc Dent Mat Dev 6:426-431.
Talbert CD. Basic investigation into the potentials of ceramic materials, as permanently implantable skeletal prostheses. MSc. Thesis, Clemson University, 1969, SC, USA.
TenHuisen KS, Brown PW. The formation of hydroxyapatite-ionomerr cements at 38℃. J Dent Res 1994;3:598-606.
TenHuisen KS, Brown PW. Variations in solution chemistry during calcium-deficient and stoichiometric hydroxyapatite formation from CaHPO4.2H2O and Ca4(PO4)2 O. J Biomed Mater Res 1997;36:233-241.
Thordarson D, Hedman T, Yetkinler D, Eskander E, Lawrence T, Poser R. Superior compressive strength of a calcaneal fracture construct augmented with remodelable cancellous bone cement. J Bone Joint Surg 1999;81-A[2]:239-246.
Tissue engineering: Application in maxillofacial surgery and periodontics. edited by Lynch SE, Genco RJ, Marx RE. Quintessence Publishing Co, Inc Illinois 1999.
Trombe JC. and Montel G. Some features of the incorporation of oxygen in different oxidation states in apatite lattice: I,II,III. J Inorg Nucl Chem 1978;40:15-30.
Welch JH. and Gutt W. High temperature studies of the system calcium oxide-phosphorus pentoxide. J Chem Soc 1961;4442-4444.
Williams DF. Review: tissue-biomaterial interactions. J Mat Sci 1987;22:3421-3425.
Xie L, Monroe EA. Calcium phosphate dental cements. Mater Res Soc Symp Proc (Materials Research Society) 1991;179:25-39.
Yamamoto H, Niwa S, Hori M, Hattori T, Sawai K, Aoki S, Hirano M, Takeuchi H. Mechanical strength of calcium phosphate cement in vivo and in vitro. Biomaterials 1998;19:1587-1591.
Yamamuro T, Nakamura T, Iida H, Kawanable K, Matsuda Y, Ido K, Tamura J, Senaha Y. Development of bioactive bone cement and its clinical applications. Biomaterials 1998;19:1479-1482.
Yaszemski MJ, Payne G, Hayes WC, Langer G, Mikos A. Evolution of bone transplantation: molecular cellular and tissue strategies to engineer human bone. Biomaterials 1996;17:175-185.
Yuan H, Kurashina K, de Bruijn JD, Li Y, de Groot K, Zhang X. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials 1999;20:1799-1806.
Zhou J, Zhang X, Chen J, Zeng S, de Groot K. High temperature characteristics of synthetic hydroxyapatite. J Mat Sci:Mat in Med 1993;4:83-85.