簡易檢索 / 詳目顯示

研究生: 柳淂婧
Liu, De-Jing
論文名稱: 撲翼微型飛行器偏航率相關橫側向穩定導數之實驗辨識
Experimental Identification of Lateral–Directional Stability Derivatives Associated with Yaw Rate for a Flapping-Wing Micro Air Vehicle
指導教授: 陳偉良
Chan, Woei-Leong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2026
畢業學年度: 114
語文別: 英文
論文頁數: 87
中文關鍵詞: 橫側向動力學偏航阻尼系數橫側向穩定導數撲翼微型飛行器
外文關鍵詞: Lateral–Directional Dynamics, Yaw-Damping Coefficient, Aerodynamic Stability Derivatives, Flapping-Wing Micro Air Vehicle (FWMAV)
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,深入探討撲翼式微型飛行器(Flapping Wing Micro Aerial Vehicle, FWMAV)的橫側向動力學,並在經典六自由度運動方程式上推導其橫側向線性化模型,以作為飛行控制與穩定性分析的理論基礎。
    橫側向運動主要包含偏航(yaw)與橫滾(roll),其動態特性受非定常撲翼氣動、機體慣性以及流場耦合效應共同影響,其中與偏航速率相關的動態穩定導數對方向穩定性具有關鍵作用。
    在完成橫側向動態模型推導後,將重點放在模型中最具影響力且文獻中缺乏之兩項動態穩定導數─側向力對偏航角速度之變化率Yr與偏航力矩對偏航角速度之變化率Nr。為取得上述之參數,設計一套具同步性的實驗平台,利用UFactory xArm6 六自由度機械手臂產生受控制偏航運動,並結合Nano 17TI六軸力感測器與Vicon光學動作捕捉系統,同步量測三軸力、三軸力矩與偏航角速度於不同側滑角與攻角條件下的變化。
    實驗結果成功辨識出FWMAV橫側向動態模型中的兩項關鍵穩定導數 Yr 與 Nr。其中,Nr在所有測試條件下皆呈負值,顯示撲翼飛行器具備穩定的偏航阻尼特性;而Yr則接近零,反映側向力相對不受偏航角速度影響。
    本研究為少數以實驗方式量測高攻角條件下撲翼微型飛行器偏航率橫側向穩定導數之研究之一,對後續飛行控制與動態模型研究具重要參考價值。

    In this study, we investigate the lateral–directional dynamic behavior of a flapping-wing micro air vehicle (FWMAV) and derive its lateral–directional linearized model based on the classical six-degree-of-freedom equations of motion, forming the theoretical foundation for flight control design and stability analysis. The lateral–directional motion primarily involves yaw and roll, whose dynamic characteristics are influenced by unsteady flapping aerodynamics, body inertial properties, and flow-field coupling effects. Among these factors, the stability derivatives associated with yaw rate play a critical role in directional stability.
    After completing the derivation of the lateral–directional dynamic model, this research focuses on two stability derivatives that are both highly influential and insufficiently documented in existing literature: the side-force derivative with respect to yaw rate Y_r and the yaw-moment derivative with respect to yaw rate N_r. To obtain these parameters, a synchronized experimental platform is developed.
    The platform employs a UFactory xArm6 six-degree-of-freedom robotic arm to generate controlled yaw motions, and integrates a Nano17TI six-axis force sensor with the Vicon¬ optical motion-capture system to synchronously measure tri-axial forces, tri-axial moments, and yaw rate under various sideslip and angle-of-attack conditions.
    Experimental results successfully identify the two key stability derivatives Yr and Nr in the FWMAV's lateral–directional dynamic model. The derivative Nr is negative under tested conditions, while Yr remains close to zero, suggesting that the side force is relatively insensitive to changes in yaw rate.
    This study provides one of the very few experimentally measured yaw-rate lateral–directional stability derivatives for an FWMAV platform under high-angle-of-attack conditions, offering valuable reference data for future flight-control and dynamic-modeling research.

    摘要2 ABSTRACT 3 ACKNOWLEDGEMENT 5 Table of Contents 6 List of Symbols and Abbreviations 11 List of Tables 13 List of Figures 14 Chapter I Introduction 16 1.1 Background 16 1.2 Motivation 16 1.3 Objectives 17 1.4 Thesis Structure 18 Chapter II Literature Review 19 2.1 Studies on the Dynamic Modeling of FWMAV 19 2.2 Aerodynamic Stability in Flapping Flight 20 2.3 Pitch and Lateral–Directional Dynamic Characteristics of FWMAV 21 Chapter III Dynamic Model 23 3.1 Coordinate System 23 3.1.1 Frame 23 3.1.2 Attitude Angle and Velocity Angle 24 3.2 Equations of Motion 24 3.2.1 Force Equations 25 3.2.2 Moment Equations 27 3.2.3 Kinematic Equations and Dynamic Equations 29 3.2.4 The Aerodynamic Force and Moment 29 3.3 Linearization of Lateral–Directional Model 30 3.3.1 Small Perturbations 30 3.3.2 Linearized Equations of Motion 31 3.4 Lateral–Directional Dynamics 32 3.4.1 State-Space Model Augmentation 32 3.4.2 Six Degree-of-Freedom Rigid Body Equations of Motion 33 Chapter IV Experimental Setup 35 4.1 Experimental Setup Overview 36 4.1.1 Version 1: Basic Configuration 37 4.1.2 Version 2: With LabVIEW and Vicon 37 4.1.2.1 Redesign the Holder of the Load Cell 38 4.1.2.2 Create the LabVIEW program for force and moment measurement 40 4.1.2.3 Attempted Data Collection and Synchronization Issues 40 4.1.3 Version 3: Using Vicon Lock Lab instead of LabVIEW 41 4.1.4 Summary of Differences 42 4.2 Introduction to Measurement Equipment 43 4.2.1 Motion Capture System 43 4.2.2 Synchronization Module–Vicon Lock Lab 44 4.2.3 Load Cell 45 4.3 Hardware Configuration 46 4.3.1 Robotic System 46 4.3.2 Flapping Wing Control System 47 4.3.3 PoE Switch and System Configuration 49 4.3.4 Vicon Placement 50 4.3.5 Fan Array Placement 51 4.3.6 Lock Lab Installation Setup 52 4.3.7 Load Cell Installation Setup 53 4.4 Software Configuration 54 4.4.1 Block-based Program for Robotic Arm Dynamic Motion 54 4.4.2 Arduino Control Program 55 4.4.3 Matlab Vicon Data Acquisition Program 55 4.5 Measurement of Yr and Nr 56 4.5.1 Theoretical Background 56 4.5.2 Load Cell Moment Translation 57 4.5.3 Experimental Design 59 4.5.4 Data Processing 60 Chapter V Results and Discussion 64 5.1 Data Processing Result Figure 64 5.2 Calculation of Yr and Nr 67 5.2.1 Yaw-rate Damping Coefficient Yr vs. β for Various α 69 5.2.2 Yaw-rate Damping Coefficient Nr vs. β for Various α 70 5.2.3 Yaw-rate Damping Coefficient Yr and Nr at Different β and α Values 72 5.3 Comparison with Delfly II 73 5.3.1 Yr and Nr Comparison 74 Chapter VI Conclusions and Summary 75 Chapter VII Future Work 77 References 78

    [1] L. Wang, W. Jiang, Z. Wu, L. Zhao, and Z. Jiao, “Modeling the bio-inspired wing-tail interaction mechanism and applying it in flapping wing aircraft pitch control,” IEEE Robotics and Automation Letters, vol. 8, no. 5, pp. 2914–2921, May 2023.
    [2] S.-J. Tsai, “Modelling and trajectory control of flapping wings,” M.S. thesis,Graduate Degree Program of Robotics, National Chiao Tung University,Hsinchu, Taiwan, 2021.
    [3] P. Chirarattananon, N. T. Jafferis, B. Y. Ma, R. J. Wood, and H. M. Stöber,“Dynamics and flight control of a flapping-wing robotic insect in the presence of wind gusts,” Interface Focus, vol. 7, no. 1, Art. no. 20160080, 2017, DOI: 10.1098/rsfs.2016.0080.
    [4] Hung-Yu, Chen "Longitudinal Dynamic Model Construction for a Flapping Wing Micro Air Vehicle" Master thesis Department of Aeronautics and Astronautics, National Cheng Kung University, 2024.
    [5] Caetano, J.V.; De Visser, C.C.; De Croon, G.C.H.E.; Remes, B.; De Wagter, C.; Verboom, J.; Mulder, M. Linear Aerodynamic Model Identification of a Flapping Wing MAV Based on Flight Test Data. Int. J. Micro Air Veh. 2013, 5, 273–286.
    [6] S. P. Sane, “The aerodynamics of insect flight,” Journal of Experimental Biology, vol. 206, no. 23, pp. 4191–4208, 2003, DOI: 10.1242/jeb.00663.
    [7] H. Liu and M. Sun, “Wing kinematics measurement and aerodynamics of hovering droneflies,” Journal of Experimental Biology, vol. 211, no. 13, pp. 2014–2025, 2008, DOI: 10.1242/jeb.016709.
    [8] W.-L. Chan, H.-Y. Chen, C.-L. Chin, and C.-H. Huang, “A bio-inspired micro air vehicle and the experimental setup for aerodynamic testing,” in Proc. 15th Annual Int. Micro Air Vehicle Conf. and Competition (IMAV), Bristol, United Kingdom, Sep. 16–20, 2024, paper IMAV2024-3.
    [9] X. Dong, D. Li, J. Xiang, and Z. Wang, “Design and experimental study of a new flapping wing rotor micro aerial vehicle,” Chinese Journal of Aeronautics, vol. 33, no. 12, pp. 3295–3307, 2020, DOI: 10.1016/j.cja.2020.04.024.
    [10] Vicon Motion Systems Ltd., Lock Lab Quick Start Guide, Revision 5.0, 2023.
    [11] B. Cheng and X. Deng, “Translational and rotational damping of flapping flight and its dynamics and stability at hovering,” IEEE Transactions on Robotics, vol. 27, no. 5, pp. 849–864, 2011, DOI: 10.1109/TRO.2011.2158250.
    [12] L. Ristroph, G. Ristroph, S. Morozova, A. J. Bergou, S. Chang, J. Guckenheimer, Z. J. Wang, and I. Cohen,“Active and passive stabilization of body pitch in insect flight,” Journal of The Royal Society Interface, vol. 10, no. 85, pp. 1–12, 2013, doi:10.1098/rsif.2013.0237.
    [13] J. P. Whitney and R. J. Wood, “Aeromechanics of passive rotation in flapping flight,” Journal of Fluid Mechanics, vol. 660, pp. 197–228, 2010, doi: 10.1017/S002211200999265X
    [14] C. Vourtsis, V. Casas Rochel, N. S. Müller, W. Stewart, and D. Floreano, “Wind Defiant: Morphing Drones,” Advanced Intelligent Systems, vol. 5, 2023, Art. no. 2200297, DOI: 10.1002/aisy.202200297

    QR CODE