簡易檢索 / 詳目顯示

研究生: 林宗彥
Lin, Tsung-Yen
論文名稱: BOLL基因甲基化的表現與男性造精功能異常之相關
Association of BOLL methylation patterns with human spermatogenic failure
指導教授: 林永明
Lin, Yung-Ming
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 55
中文關鍵詞: BOLLDNA methylationspermatogenic failure
外文關鍵詞: BOLL, DNA methylation, spermatogenic failure
相關次數: 點閱:69下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • BOLL基因是一個具遺傳保留特性的生殖基因,從低階生物如果蠅到高階生物如人類,BOLL基因都已被證實參與調控精子生成。我們與其他人過去的實驗發現,BOLL的蛋白質可表現在正常睪丸粗絲期精母細胞及圓形精細胞的細胞質,另外BOLL的核糖核酸和蛋白質在造精功能異常的睪丸表現量有下降的情形,加上過去其他實驗證實BOLL基因很少有突變或是多型性變異的發生,因而我們推測造精功能異常跟附基因調控有關。我們過去genome-wide methylation array 和 cDNA microarray 的實驗發現BOLL在精子生成機能低下的睪丸發現有高甲基化的表現,所以我們這篇研究目的在於探討BOLL基因高甲基化與造精功能異常之間的關聯性。
    我們先上相關網站鍵入關鍵字找出BOLL基因的CpG island (CGI),對照我們methylation array的結果,發現methylation array所找到BOLL基因高甲基化表現的區域剛好位在CGI,接著我們挑選造精功能正常的不孕病人以及精子生成功能低下的不孕病人參與接下來的實驗,我們用methylation pyrosequencing去定量出每個CpG的甲基化表現,單個CpG甲基化表現量我們以多少比率甲基化來呈現,代表在這個CpG上有多少比率的胞嘧啶在pyrosequencing過程中被轉為胸線嘧啶,我們用 quantitative real-time RT-PCR去定量出BOLL 的轉錄表現量,用 spermatogenic core去評估造精功能異常的嚴重程度。甲基化比率和轉錄表現量間的關聯性以及甲基化比率和spermatogenic score間的關聯性我們用皮爾遜積差相關係數去分析,最後我們用 luciferase reporter assay的實驗試著去證實BOLL的CGI 啟動子一旦被甲基化會去影響啟動子的活性。
    我們實驗結果證實BOLL的轉錄表現量在精子生成功能低下的睪丸比較低。為了方便分析BOLL啟動子所要研究的區域內共三十四個CpGs,我們利用實驗的primer將這區域切分成七個研究區塊,實驗結果發現其中有八個CpGs在精子生成功能低下的病人有高甲基化的表現,又其中有三個CpGs它的甲基化表現量跟轉錄表現量呈現有意義的負相關,七個CpGs的甲基化表現量跟spermatogenic score呈現有意義的負相關。七個區塊我們將它命名為區塊一到七,其中區塊二、區塊三、區塊六以及區塊二加三在精子生成功能低下的病人有高平均甲基化的表現,又其中區塊二的甲基化表現量跟轉錄表現量呈現有意義的負相關,區塊二、區塊三、區塊二加三的甲基化表現量跟spermatogenic score呈現有意義的負相關。在in vitro的luciferase reporter assay實驗,我們發現啟動子冷光活性在被Methyltransferase SssI甲基化後有下降的情形,在被Methyltransferase HhaI甲基化後則是沒有改變。我們的研究發現BOLL基因CGI啟動子的高甲基化會造成BOLL基因表現量的下降,進而造成人類造精功能異常。

    BOLL, a highly conserved sterility-related gene, has been shown to play a role in spermatogenesis from flies to humans. Our and other studies demonstrated that BOLL is expressed in the cytoplasm of pachytene spermatocytes and round spermatids in the human testes with normal spermatogenesis, that the expression of BOLL mRNA and protein were decreased in infertile patients with spermatogenic failure and that neither mutation nor polymorphism of BOLL gene was identified in infertile men. Therefore, epigenetic regulation of BOLL might be responsible for the decreased BOLL expression. In our previous study, by using genome-wide methylation array and cDNA microarray, we demonstrated the hypermethylation status of BOLL in the testes with hypospermatogenesis compared to the testes with normal spermatogenesis. The aim of this project was set out to explore the association of BOLL gene hypermethylation and spermatogenic failure.

    In addition to the results from methylation array, the CpG island (CGI) of BOLL gene was predicted in silico, and the predicted CGI contained the hypermethylation site identified from methylation array. Azoospermic patients with normal spermatogenesis and hypospermatogenesis were enrolled. The methylation status of each CpG was determined by pyrosequencing analysis after bisulfate treatment. The degree of each methylation at each CpG position was determined by the ratio of C to T incorporated during pyrosequencing (percentage of DNA methylation). The mRNA transcript levels were determined by quantitative real-time RT-PCR. The severity of spermatogenic failure was determined by spermatogenic score. Pearson product moment correlation coefficients were calculated to determine the correlation between the percentage of methylation (% methylation) and transcript level and spermatogenic score. In vitro luciferase reporter assay was used to verify the effects of hypermethylation of CGI promoter on promoter activity.

    The mRNA transcript levels of BOLL were significantly lower in patients with hypospermatogenesis. The amplified fragment in the promoter region of the BOLL gene was sequenced by using seven pairs of primers to analyze a total of 34 CpG sites. Of the 34 CpGs, eight showed significantly higher % methylation in hypospermatogenesis group, and significantly inverse correlation was found between CpG % methylation and transcript levels in three GpGs. For individual sequencing segment (segment 1-7), only segment 2, 3, 6 and 2+3 showed significantly higher methylation index (MtI, mean of % methylation at all CpG positions) in hypospermatogenesis, and segment 2 significantly and inversely correlated with transcript levels. Similarly, of the eight CpGs showing significantly higher % methylation in hypospermatogenesis group, significantly inverse correlation was found between CpG % methylation and spermatogenic score in seven GpGs. Of the four segments showing significantly higher MtI in hypospermatogenesis, three segments significantly and inversely correlated with spermatogenic score. In vitro luciferase reporter assay revealed that significantly decreased luciferase activity were noted in methyltransferase SssI treated constructs but not in methyltransferase HhaI treated constructs. Our results, for the first time, demonstrate that hypermethylation of CGI promoter of BOLL gene contributes to one of the causes of low expression of BOLL, which may lead to spermatogenic failure in humans.

    Abstract in Chinese ………………………………………………………………..……. i Abstract in English ……………………………………………………………..………iii Acknowledgement………………………………………………………………………..v Table of Contents …………………………………………………………………….…vi List of Tables ………………………………………………………………….………….x List of Figures ………………………………………………………………...…………xi List if Abbreviations ……………………………………………………………......…xiii Chapter 1 Introduction …………………………………………………………….……1 1-1 Male infertility and genetic cause …………………………………….…………1 1-2 BOLL gene in spermatogenesis …………………………………………………2 1-3 Epigenetics in spermatogenesis …………………………………………………3 1-4 Preliminary results in our laboratory …………………………………………....4 1-5 Objectives of this project ………………………………………………………..5 1-6 Specific Aims ………………………………………………………………..…..5 Chapter 2 Materials and Methods ………………………………………………..…….6 2-1 To validate the methylation status of CpGs by pyrosequencing in infertile men with normal spermatogenesis and hypospermatogenesis ……..….….…6 2-1-1 Prediction of BOLL CGI ………………………………………….……..….6 2-1-2 Subjects and testicular sample ………………………………………………7 2-1-3 DNA extraction ………………………………………………….….………7 2-1-4 Bisulfate modification and Bisulfite modified sequencing ………...……….8 2-1-5 Pyrosequencing ……………………………………………..………………9 2-1-6 Statistical analysis …………………………………………………..………9 2-2 To validate the BOLL transcript level by quantitative RT-PCR in the testes of normal spermatogenesis and hypospermatogenesis …………………………9 2-2-1 Subjects and testicular sample ………………..………………………….….9 2-2-2 RNA extraction …………………..………………………………………...10 2-2-3 Complementary DNA synthesis and quantitative Real-time PCR …..…….11 2-2-4 Statistical analysis ……………………………..…………………………..11 2-3 To investigate the correlation between methylation status and selected CpG sites and transcript level of BOLL gene ……………………………………12 2-3-1 Patients …………………..……………………………………………….12 2-3-2 Statistical analysis …………………………..……………………………..12 2-4 To investigated the correlation between methylation status of selected CpG sites and spermatogenic score ……………………………………..……….12 2-4-1 Subjects and testicular sample …………………….…………………….…12 2-4-2 Fixation of testicular biopsies and H&E stain ……..………………………13 2-4-3 Spermatogenic score ………………………………..……………………..14 2-4-4 Statistical analysis ……………………………..…………………………..14 2-5 To validate hypermethylated status of these CpG sites resulting in decreased transcript level by promoter assay ………………………………..………14 2-5-1 Plasmids, stable transfections and promoter activity assay ………..…….14 2-5-2 In Vitro DNA methylation and transient transfection ……..……………..15 Chapter 3 Results …………………………………………….………………….……..16 3-1-1 The CGI promoter of BOLL gene ……………………………….…….…16 3-1-2 Hypermethylation regions identified by methylation array in the testes of Hypospermatogenesis …………………………………………………….16 3-1-3 The result of methylation pyrosequencing over CGI promoter of BOLL gene……………………………………………………….……….……17 3-1-3-1 Selected sequence for methylation pyrosequencing ………..……….……17 3-1-3-2 Methylated status of isolated CpG site and segment over CGI promoter of BOLL gene in hypospermatogenic testes versus normal testes ……..……17 3-2 Comparison of transcript level of BOLL gene between HS and NR…...…18 3-3 Correlation between methylated status in CGI promoter and transcript level of BOLL …………………………………………..………………………18 3-4 Histological finding and spermatogenic score of the testicular tissue, and the correlation between methylation status in CGI promoter and spermatogenic score ………………………………………………………………..……..18 3-4-1 Histological finding of the patients …..……………………………………18 3-4-2 Correlation between methylation status and spermatogenic score ……..….19 3-5 Effect of CGI promoter methylation on BOLL promoter activity by luciferase reporter assay ……………………………………….……………………...19 3-5-1 Generation of transfected reporter vector ……………….………….……...19 3-5-2 Effect of the CpG methylation on BOLL promoter activity ………..……..20 Chapter 4 Discussion ………………………..…………………………………………21 Chapter 5 Conclusion …………………………………………………….……………25 References ……………………………...……………………………………………….26 Tables and Figures ……………………………………………..………………………30 Appendices …………………………………………………………..……………….…54

    Bergmann, M., & Kliesch, S. (1998). Hodenbiopsie In: Krause W, Weidner W (eds) Andrologie. Enke Verlag, Stuttgart, pp 66-71. doi: 10.1007/978-3-540-78355-8_11
    Byun, C. J., Seo, J., Jo, S. A., Park, Y. J., Klug, M., Rehli, M., . . . Jo, I. (2012). DNA methylation of the 5'-untranslated region at +298 and +351 represses BACE1 expression in mouse BV-2 microglial cells. [Research Support, Non-U.S. Gov't]. Biochem Biophys Res Commun, 417(1), 387-392. doi: 10.1016/j.bbrc.2011.11.123
    Choi, Y. S., Kim, S., Kyu Lee, H., Lee, K.-U., & Pak, Y. K. (2004). In vitro methylation of nuclear respiratory factor-1 binding site suppresses the promoter activity of mitochondrial transcription factor A. Biochemical and Biophysical Research Communications, 314(1), 118-122. doi: 10.1016/j.bbrc.2003.12.065
    De Kretser DM, a. B. H. (1997). The Y chromosome and spermatogenesis. N Engl J Med, 336, 576-577.
    Deaton, A. M., & Bird, A. (2011). CpG islands and the regulation of transcription. [Research Support, Non-U.S. Gov't Review]. Genes Dev, 25(10), 1010-1022. doi: 10.1101/gad.2037511
    Devroey, P., Fauser, B. C., & Diedrich, K. (2009). Approaches to improve the diagnosis and management of infertility. [Research Support, Non-U.S. Gov't Review]. Hum Reprod Update, 15(4), 391-408. doi: 10.1093/humupd/dmp012
    Doerksen T, T. J. (1996). Developmental exposure of spermatozoa to 5- azacytidine results in abnormal preimplantation development. BIOLOGY OF REPRODUCTION, 55, 1155-1162.
    Eberhart CG, M. J., Wasserman SA. (1996). Meiotic cell cycle requirement for a fly homologue of human deleted in Azoopsermia. Nature, 381(6585), 783-785.
    Eckhardt, F., Lewin, J., Cortese, R., Rakyan, V. K., Attwood, J., Burger, M., . . . Beck, S. (2006). DNA methylation profiling of human chromosomes 6, 20 and 22. [Comparative Study Research Support, Non-U.S. Gov't]. Nat Genet, 38(12), 1378-1385. doi: 10.1038/ng1909
    Evers, J. L. H. (2002). Female subfertility. The Lancet, 360(9327), 151-159. doi: 10.1016/s0140-6736(02)09417-5
    Felsenfeld, A. C. B. G. (2000). Methylation of a ctcf-dependent boundary controls imprinted expression of the igf2 gene. Nature genetics, 405, 482-485.
    Ferlin A, R. F., Gatta V, Zuccarello D, Palka G, Foresta C. (2007). Male infertility: role of genetic background. Reprod Biomed Online, 14(6), 734-745.
    Gerda Egger, G. L., Ana Aparicio & Peter A. Jones. (2004). Epigenetics in human disease andprospective of epigenetic therapy. Nature genetics, 429, 457-463.
    Jaenisch, R., & Bird, A. (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. [Review]. Nat Genet, 33 Suppl, 245-254. doi: 10.1038/ng1089
    Jan A.M.Kremer1, Joep H.A.M.Tuerlings2, et al., 1993). Unfortunately, this rapid development in thera-, Eric J.H.Meuleman3, F. S., peutic possibilities has not been accompanied by a rapid, Edwin Mariman2, D. F. C. M. S., increase of knowledge on the aetiology of male infertility. In, Lies H.Hoefsloot2, D. D. M. B. a. p., little is known about the contribution of genetic, & M.W.M.Merkus1, H. (1997). Microdeletions of the Y chromosome and intracytoplasmic sperm injection from gene to clinic. Human Reproduction, 12(4), 687-691.
    Jones, D. T. a. P. A. (2003). The CpG island searcher a new WWW resource. In Silico Biology 3(3), 235-240.
    Jones, P. A. (1999). The DNA methylation paradox. Trends Genet., 15, 34-37.
    Jones, P. A. (2012). Functions of DNA methylation: islands, start sites, gene bodies and beyond. [Research Support, N.I.H., Extramural Review]. Nat Rev Genet, 13(7), 484-492. doi: 10.1038/nrg3230
    Kee, K., Angeles, V. T., Flores, M., Nguyen, H. N., & Reijo Pera, R. A. (2009). Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Nature, 462(7270), 222-225. doi: 10.1038/nature08562
    Kelly TL, L. E., Trasler JM. (2003). 5-Aza-2_(-Deoxycytidine induces alterations in murine spermatogenesis and pregnancy outcome. Journal of Andrology, 24, 822-830.
    Kleiman, S. E., Lehavi, O., Hauser, R., Botchan, A., Paz, G., Yavetz, H., & Yogev, L. (2011). CDY1 and BOULE transcripts assessed in the same biopsy as predictive markers for successful testicular sperm retrieval. [Evaluation Studies]. Fertil Steril, 95(7), 2297-2302, 2302 e2291. doi: 10.1016/j.fertnstert.2011.03.020
    Klug M, R. M. (2006). Functional Analysis of Promoter CpG Methylation Using a CpG-Free luciferase reporter vector. Epigenetics, 3, 127-130.
    Krausz, C. (2011). Male infertility: pathogenesis and clinical diagnosis. [Research Support, Non-U.S. Gov't Review]. Best Pract Res Clin Endocrinol Metab, 25(2), 271-285. doi: 10.1016/j.beem.2010.08.006
    Laurent L, W. E., Li G, Huynh T, Tsirigos A, Ong CT, Low HM, Kin Sung KW, Rigoutsos I, Loring J, Wei CL. (2010). Dynamic changes in the human methylome during differentiation. Genome Research 3, 320-331.
    Lin, Y. M., Chung, C. L., & Cheng, Y. S. (2009). Posttranscriptional regulation of CDC25A by BOLL is a conserved fertility mechanism essential for human spermatogenesis. [Research Support, Non-U.S. Gov't]. J Clin Endocrinol Metab, 94(7), 2650-2657. doi: 10.1210/jc.2009-0108
    Lin, Y. M., Kuo, P. L., Lin, Y. H., Teng, Y. N., & Nan Lin, J. S. (2005). Messenger RNA transcripts of the meiotic regulator BOULE in the testis of azoospermic men and their application in predicting the success of sperm retrieval. [Research Support, Non-U.S. Gov't]. Hum Reprod, 20(3), 782-788. doi: 10.1093/humrep/deh647
    Luetjens, C. M. (2004). Association of Meiotic Arrest with Lack of BOULE Protein Expression in Infertile Men. Journal of Clinical Endocrinology & Metabolism, 89(4), 1926-1933. doi: 10.1210/jc.2003-031178
    M. Gardiner-Garden, & Frommer, M. (1987). CpG Islands in vertebrate genomes Journal of Molecular Biology, 196(2), 261-282.
    McLachlan, R. I., & O'Bryan, M. K. (2010). Clinical Review#: State of the art for genetic testing of infertile men. [Research Support, Non-U.S. Gov't Review]. J Clin Endocrinol Metab, 95(3), 1013-1024. doi: 10.1210/jc.2009-1925
    Oakes, C. C., Kelly, T. L., Robaire, B., & Trasler, J. M. (2007). Adverse effects of 5-aza-2'-deoxycytidine on spermatogenesis include reduced sperm function and selective inhibition of de novo DNA methylation. [Research Support, Non-U.S. Gov't]. J Pharmacol Exp Ther, 322(3), 1171-1180. doi: 10.1124/jpet.107.121699
    Oakes, C. C., La Salle, S., Smiraglia, D. J., Robaire, B., & Trasler, J. M. (2007a). Developmental acquisition of genome-wide DNA methylation occurs prior to meiosis in male germ cells. [Research Support, Non-U.S. Gov't]. Dev Biol, 307(2), 368-379. doi: 10.1016/j.ydbio.2007.05.002
    Oakes, C. C., La Salle, S., Smiraglia, D. J., Robaire, B., & Trasler, J. M. (2007b). A unique configuration of genome-wide DNA methylation patterns in the testis. [Research Support, Non-U.S. Gov't]. Proc Natl Acad Sci U S A, 104(1), 228-233. doi: 10.1073/pnas.0607521104
    Renee Reijo1, T.-Y. L., Pia Salo3, Raaji Alagappan1, Laura G. Brown1, Michael Rosenberg1, 4, Steve Rozen2, Tom Jaffe1, Donald Straus4, Outi Hovatta5, Albert de la Chapelle3, Sherman Silber6 & David C. Page1. (1995). Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene. Nature genetics 10, 383-393.
    Ruggiu M, S. R., Taggart M, McKay SJ, Kilanowski F, Saunders P, Dorin J, Cooke HJ. (1997). The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature, 389(6646), 73-77.
    S J Silber, R Alagappan, and, L. G. B., & Page, D. C. (1998). Y chromosome deletions in azoospermic and severely oligozoospermic men undergoing intracytoplasmic sperm injection after testicular sperm extraction. Human Reproduction, 13(12), 3332-3337.
    Saxonov, S., Berg, P., & Brutlag, D. L. (2006). A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. [Research Support, N.I.H., Extramural]. Proc Natl Acad Sci U S A, 103(5), 1412-1417. doi: 10.1073/pnas.0510310103
    Shah, C., Vangompel, M. J., Naeem, V., Chen, Y., Lee, T., Angeloni, N., . . . Xu, E. Y. (2010). Widespread presence of human BOULE homologs among animals and conservation of their ancient reproductive function. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. PLoS Genet, 6(7), e1001022. doi: 10.1371/journal.pgen.1001022
    Stadler, M. B., Murr, R., Burger, L., Ivanek, R., Lienert, F., Scholer, A., . . . Schubeler, D. (2011). DNA-binding factors shape the mouse methylome at distal regulatory regions. [Research Support, Non-U.S. Gov't]. Nature, 480(7378), 490-495. doi: 10.1038/nature10716
    Takai, D., & Jones, P. A. (2002). Comprehensive analysis of CpG islands in human chromosomes 21 and 22. [Research Support, U.S. Gov't, P.H.S.]. Proc Natl Acad Sci U S A, 99(6), 3740-3745. doi: 10.1073/pnas.052410099
    Takeshi Karashima1, A. S., 2 and Masayuki Yamamoto1,*. (2000). Caenorhabditis elegans homologue of the human azoospermia factor DAZ is required for oogenesis but not for spermatogenesis. development, 127, 1069-1079.
    Tamowski, S., Aston, K. I., & Carrell, D. T. (2010). The use of transgenic mouse models in the study of male infertility. [Review]. Syst Biol Reprod Med, 56(3), 260-273. doi: 10.3109/19396368.2010.485244
    VanGompel, M. J., & Xu, E. Y. (2010). A novel requirement in mammalian spermatid differentiation for the DAZ-family protein Boule. [Research Support, N.I.H., Extramural]. Hum Mol Genet, 19(12), 2360-2369. doi: 10.1093/hmg/ddq109
    Westerveld, G. H., Repping, S., Leschot, N. J., van der Veen, F., & Lombardi, M. P. (2005). Mutations in the human BOULE gene are not a major cause of impaired spermatogenesis. Fertil Steril, 83(2), 513-515. doi: 10.1016/j.fertnstert.2004.10.013
    Xu, E. Y. (2003). Human BOULE gene rescues meiotic defects in infertile flies. Hum Mol Genet, 12(2), 169-175. doi: 10.1093/hmg/ddg017
    Xu, E. Y., Moore, F. L., & Pera, R. A. (2001). A gene family required for human germ cell development evolved from an ancient meiotic gene conserved in metazoans. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Proc Natl Acad Sci U S A, 98(13), 7414-7419. doi: 10.1073/pnas.13109049

    無法下載圖示 校內:2018-02-07公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE