簡易檢索 / 詳目顯示

研究生: 葉妍伶
Yeh, Yen-Ling
論文名稱: 創新介觀型貧油觸媒燃燒之熱光電系統
The Development of a Novel Meso-Scale Lean Catalytic Thermophotovoltaic System
指導教授: 趙怡欽
Chao, Yei-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 55
中文關鍵詞: 介觀尺寸觸媒燃燒熱光電貧油燃燒白金觸媒
外文關鍵詞: Meso-scale, catalytic combustion combustor, thermophotovoltaic system, lean combustion, Pt catalyst
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究著眼開發一創新觸媒燃燒室應用於熱光電(thermophotovoltaic,TPV)系統上,以克服小型燃燒室常面臨如:滯留時間(residence time)不足、熱散失(heat loss)、壁面冷熄(wall quenching)等問題,,且由文獻中指出白金觸媒在高溫下輻射光譜會往短波長移動之特性,容易與光電板之吸收波段相符,故將白金選做熱光電燃燒室輻射(emitter)材料,並藉由白金觸媒效應增加小型燃燒室之操作區間,配合新式火焰穩駐設計,改善熱散失,達到貧油燃燒熱光電系統之目的。
    從燃燒現象探討,與傳統背向階梯(backward facing step)設計相比,觀察燃料供給速度和當量比分別對兩者造成了不同影響,使用熱電偶和紅外線熱像儀等器材,透過亮度、溫度與穩駐位置等討論,得出適宜的操作區間。並將燃燒器輻射器與銻化鎵(GaSb)光電板整合成一熱光電系統,測試幅射光譜與光電板輸出效能等,評估整體系統之理想化效益與實際差異,進而尋找可行的改善方式。測試結果發現觸媒對於小型燃燒室之助益,與新式環繞孔洞設計配合內外燃料供給加熱,具有穩駐火焰、增加可燃區間、減少熱散失等優點。可明顯達到貧油觸媒燃燒與感善熱光電效率的目的。

    The research is focused on a novel combustor to be used on meso-scale thermophotovoltaic (TPV) devices. In order to overcome problems often encountered in miniature power systems, such as short residence time, heat loss and wall quenching, we propose a novel setup of using platinum as the catalyst as well as the emitter for TPV. It has been pointed out in other research that platinum can emit shorter wavelength at higher temperature than usual, which can be used as the material of an emitter. Moreover, using platinum catalyst can increase combustion temperature by 200°C and theoretically significantly enhance the emission efficiency.
    The current combustor design consists of a percolated Pt catalyst tube in the TPV combustor to stabilize the flame, enhance combustion and emit high temperature radiation. We used an R type thermocouple and a thermal vedio system (TVS) to measure the tube exit and wall temperature, so that we can identify the flame anchor position and distinguish the brightness. Compared with the backward facing step desigh of a traditional TPV combustor, the proposed percolated hole desigh is proved to have a wider operating range. The proposed combustor is also integrated with the GaSb PV cell, then measure the spectrum and I-V curve. The advantage of the outstanding features of the proposed catalyst TPV combustor is partially verified in the current research and further research in the future is urged.

    摘要 I Abstract III 致謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 符號說明 XII 第一章 緒論 1 1-1前言 1 1-2小型TPV系統之文獻回顧 2 1-2-1燃燒室 2 1-2-2輻射器 5 1-2-3過濾器 7 1-2-4光電板 7 1-3研究動機與目的 10 第二章 實驗設備 12 2-1觸媒燃燒室 12 2-2光電板 13 2-3熱電偶 13 2-4光譜量測系統 14 2-4-1卡塞格倫反射鏡(Cassegrain) 14 2-4-2光纖(Optic fiber) 15 2-4-3單光儀(monochromator) 15 2-4-4液態氮冷卻之電荷耦合元件(LN- CCD) 16 2-5紅外線熱像儀(Thermal video system,TVS) 16 2-6電子負載 17 第三章 實驗方法 18 3-1紅外線測溫槍校準 18 3-2輻射器表面光譜 19 3-3熱光電系統效率測試 19 3-4燃燒室操作測試 20 第四章 結果與討論 21 4-1當量比影響 21 4-2流速影響 23 4-3輻射器表面溫度分布區間 24 4-4 TPV系統測試和效率分析 27 4-5 白金觸媒光譜 31 第五章 結論與未來工作 32 參考文獻 34

    [1] D. C. White, B. D. Wedlock, and J. Blair, Proceedings of the 15th Annual Power Sources Conference, Atlantic City, NJ, 1961, pp. 125–132.
    [2] W. M. Yang, S. K. Chou, C. Shu, H. Xue, Z. W. Li, D. T. Li, And J. F. Pan, Energy Conversion & Management, vol. 44, 2003, pp. 2625-2634.
    [3] H. Xue, W.M. Yang, S. Chou,C. Shu, and Z.W. Li, Nanoscale Microscale Thermophys., Eng. 9, 2005,85–97 .
    [4] W.A. Sirignano, T.K. Pham, D. Dunn-Rankin, Proc.Combust.Inst.,vol.29, 2002,pp.925-931
    [5] Y.H. Li, T.S. Cheng, Y.S. Lien,Y.C. Chao,Proc.Combust. Inst., vol.33, 2011, 3439-3445
    [6] G. A. Boyarko, C. J. Sung, and S. J. Schneider, Proc of Combust Inst. 30, 2005,2481-2488.
    [7] T. Okamasa, G.G. Lee, Y. Suzuki, N. Kasagi, S. Matsuda,J Micromech and Microeng ,16, 2006, S198–205.
    [8] W. M. Yang, , S. K. Chou, , C. Shu, , Z. W. Li, , and H. Xue, ,J of Micromech and Microeng ,15, 2005, s239-s246.
    [9] W. M. Yang, , S. K. Chou, , C. Shu, , H. Xue, , and Z. W. Li, , Applied Thermal Engineering, 22, 2002, 1777-1787.
    [10] Z. W. Li, , S. K. Chou, C. Shu, and W. M. Yang, ,J of Micromech and Microeng, 15, 2005,207-212.
    [11] W. M. Yang, S. K. Chou, C. Shu, , Z. W. Li, and H. Xue, Sensors and Actuators A: Physical, 119, 2005, 441-445.
    [12] Z. W. Li, S. K. Chou, C. Shu, , H. Xue, and W. M. Yang, Applied Thermal Engineering, 25, 2005, 217-281
    [13] W. M. Yang, , S. K. Chou, C. Shu, , Z. W. Li, and H. Xue, , IEE/ASME Jof Microelecmech Syst, 13, 2004,851-858.
    [14] J. Li, S.K. Chou, , Z.W. Li, and W.M. Yang, Combustion and Flame, 156, 2009, 1587-1593.
    [15] J. Li, S.K. Chou, , G Huang, W.M. Yang, and Z.W. Li, , Exp Thermal and Fluid Sci, 33, 2009,764-773.
    [16] S.A. Lloyd, F.J. Weinberg , Nature, 251,1974,47–9.
    [17] Y.H. Li, Ph.D.dissertation,NCKU,Tainan,Taiwan,2008.
    [18] W.M.Yang, S.K. Chou, K.J. Chua, H. An, K. Karthikeyan, X Zhao, Applied Energy, 2012,
    [19] W.M. Yang, S.K. Chou, C. Shu, H. Xue, Z.W. Li, J. Microelectromech. Syst. ,13 , 2004, 851–855.
    [20] L.G. Ferguson, F. Dogan, Mater. Sci. Eng. B 83 , 2001, 35–41.
    [21] M.G. Krishna, M. Rajendran, D.R. Pyke, A.K. Bhattacharya, Sol. Energy Mater. Sol. Cells 59 , 1999, 337–347.
    [22] J. Ferber, J. Aschaber, C. Hebling, A. Heinzel, R. Wiehle, M. Zenker,J. Luther, Proceedings of the 16th European Photovoltaic Solar EnergyConference and Exhibition, Glasgow, 2000.
    [23] W. M. Yang, S. K. Chou, C. Shu, H. Xue, , and Z. W. Li, , J of Physics D: Applied Physics, 37, 2004, 1017-1020.
    [24] T.J. Coutts, Renew Sustain Energy Rev ,3, 1999, 77–184.
    [25] L.C Chia, B Feng., J of Power Sources, 165(1), 2007, 455-480.
    [26] Donald L.Chubb, “ Fundamentals of Thermophotovoltaic Energy Conversion,”1st ed, 2007.
    [27] S. K.Chou, W. M. Yang, K. J. Chua, J. Li, and K. L. Zhang, Appl. Energy 88(1), 2011,1–16 .
    [28] 葛紹岩,那鴻悅編, “熱輻射性質及其量測”,1987
    [29] 黃惠良,蕭錫鍊,周明其等人著, “太陽電池(solar cell)”,2008

    無法下載圖示 校內:2014-08-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE