簡易檢索 / 詳目顯示

研究生: 黃俊瑋
Huang, Chun-Wei
論文名稱: 利用生活實驗室方式進行太陽能光電系統與木構建築的生命週期評估:以國立成功大學為案例研究
Life Cycle Assessment of Photovoltaic and Wood Structure Using a Living Lab Approach: A Case Study of National Cheng Kung University
指導教授: 哈里森約翰
Harrison, John
學位類別: 碩士
Master
系所名稱: 其他 - 全校永續跨域國際碩士學位學程
International Master's Program in Interdisciplinary Sustainability Studies
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 119
中文關鍵詞: 木構建築太陽能光電生命週期評估碳中和永續校園
外文關鍵詞: Wood structure, Photovoltaic, Life cycle assessment, Carbon neutrality, Living lab
相關次數: 點閱:102下載:50
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以國立成功大學(NCKU)為生活實驗室,探討木材建築結合太陽能光電(PV)系統(特別是有機光電與可攜式儲能系統)的生命週期評估(LCA),評估碳中和潛力,支持永續校園發展。動機源於全球氣候挑戰及聯合國永續發展目標(SDG 7、11、13)。木材建築具碳封存效益,PV提供低成本可再生能源,需LCA驗證整合碳足跡,以解決台灣校園能源短缺及碳中和政策。
    方法遵循ISO 14040/14044與EN 15804標準,涵蓋原料萃取、製造、運輸、使用及回收。數據來自公共資料庫與實地測量,經Excel處理。功能單位:60年建築面積。情境分析包括基準混合配置(平頂12.92 m²+斜頂10.33 m²)、全平頂及全斜頂(均23.25 m²),評估角度對全球暖化潛勢(GWP)與發電效率影響。
    基準混合結果:木材排放焚燒389.36 kg CO₂e,掩埋2724.09 kg CO₂e;PV碳足跡711.72 kg CO₂e,回收能源減約26.4 kg CO₂e。年度碳減量(ACR)1929.36–2040.22 kg CO₂e,碳中和需0.56–1.74年。全平頂因曝曬增強,縮至0.2–1.78年;全斜頂受遮蔭延至0.54–1.68年。模擬用電:每日9.96 kWh(LED 0.40 kWh、風扇0.48 kWh、空調8.00 kWh等),年耗3633.58 kWh,多餘能源儲於可攜式電源。OPV低耗能適合校園,需調整6小時日照角度。混合配置降低成本。
    結論驗證碳中和潛力,需優化角度。生活實驗室促進教育,符合SDG 4,建議NCKU擴大應用。多維視角凸顯減碳與美學效益。未來可探討經濟LCA或多校園比較。

    This study utilizes National Cheng Kung University (NCKU) as a living lab to investigate life cycle assessment (LCA) of wood structure integrated with photovoltaic (PV) systems, specifically organic photovoltaics (OPV) and Energy Storage System (ESS), evaluating carbon neutrality potential and supporting sustainable campus development. Motivated by global climate challenges and UN Sustainable Development Goals (SDGs): Goals 7 (Affordable and Clean Energy), 11 (Sustainable Cities and Communities) and 13 (Climate Action). Wood structure offers carbon sequestration, while PV provides low-cost renewable energy. Integrated carbon footprint needs LCA validation to address Taiwan’s campus energy shortages and neutrality policies.
    Methods follow ISO 14040/14044 framework with EN 15804 standard, covering raw material extraction, manufacturing, transportation, usage, and recycling. Data from public databases and field measurements are processed via Excel. Functional unit: 60-year lifespan construction area. Scenario analysis includes baseline mixed configuration (flat 12.92 m² + sloped 10.33 m²), full floor and full slope (both are 23.25 m²), assessing angle impacts on global warming potential (GWP) and power efficiency.
    Results for baseline mixed: wood emissions 389.36 kg CO₂e (incineration) and 2724.09 kg CO₂e (landfilling); PV footprint 711.72 kg CO₂e, recycled energy reduces ~26.4 kg CO₂e. Annual carbon reduction (ACR) 1929.36–2040.22 kg CO₂e; neutrality in 0.56–1.74 years. Full flat shortens to 0.2–1.78 years via enhanced exposure; full sloped extends to 0.54–1.68 years due to shading. Simulated usage: 9.96 kWh daily (LED 0.40 kWh, fan 0.48 kWh, AC 8.00 kWh, etc.), 3633.58 kWh annually; surplus stored in portable power. OPV suits campus with low consumption, needing 6-hour sunlight angle adjustments. Mixed configuration cuts costs economically.
    Conclusion confirms carbon neutrality potential requires further perspective. Living labs promote education and align with SDG 4. NCKU recommends expanding their application. A multi-dimensional perspective highlights both carbon reduction and aesthetic benefits. Future research is warranted for economic LCA or multi-campus comparisons.

    ABSTRACT ii 摘要 iii ACKNOWLEDGEMENTS iv TABLE OF CONTENTS v LIST OF TABLES vii LIST OF FIGURES viii LIST OF SYMBOLS ix LIST OF ABBREVIATIONS xi CHAPTER 1 INTRODUCTION 1 1.1 RESEARCH BACKGROUND 1 1.2 RESEARCH MOTIVATION 3 1.3 RESEARCH OBJECTIVES & QUESTIONS 5 1.3.1 RESEARCH OBJECTIVES 5 1.3.2 RESEARCH QUESTIONS 6 1.4 TERMS DEFINITIONS 7 1.4.1 ENVIRONMENTAL ASSESSMENT AND LIFE CYCLE ANALYSIS 7 1.4.2 ENVIRONMENTAL IMPACT AND SUSTAINABLE DEVELOPMENT 8 1.4.3 ARCHITECTURE AND ENERGY TECHNOLOGY 9 1.4.4 EMISSIONS AND CARBON CYCLE 10 CHAPTER 2 LITERATURE REVIEW 12 2.1 CAMPUS LIVING LAB AND SUSTAINABLE CAMPUS 12 2.2 UNIVERSITY SUSTAINABILITY OF PHOTOVOLTAIC AND WOOD STRUCTURE 14 2.2.1 PHOTOVOLTAIC 14 2.2.2 WOOD STRUCTURE 16 2.3 APPLICATION OF LIFE CYCLE ASSESSMENT IN PHOTOVOLTAIC AND WOOD STRUCTURE 17 2.3.1 LIFE CYCLE ASSESSMENT IN PHOTOVOLTAIC 18 2.3.2 LIFE CYCLE ASSESSMENT IN WOOD STRUCTURE 21 2.4 THE RELATIONSHIP BETWEEN SDGS AND THE UNIVERSITY 23 CHAPTER 3 RESEARCH METHODS 26 3.1 RESEARCH WORKFLOW 26 3.2 THE LIVING LAB METHOD IS APPLIED TO THE CASE OF NCKU 28 3.2.1 INTRODUCTION TO THE STUDY AREA 29 3.2.2 DATA COLLECTION METHOD 31 3.3 PARAMETER SETTING IN LCA 33 CHAPTER 4 RESEARCH RESULTS AND DISCUSSION 49 4.1 ANALYSIS OF EACH STAGE OF LCA (RAW MATERIALS, MANUFACTURING, TRANSPORTATION, USE, RECYCLING) 49 4.1.1 WOOD STRUCTURE 49 4.1.2 PHOTOVOLTAIC SYSTEM 62 4.2 LCA ANALYSIS RESULTS OF LIVING LAB 81 4.3 IMPACT OF GLOBAL WARMING AND CLIMATE CHANGE 87 4.3.1 HOW NCKU CAMPUS CASE PROMOTES CARBON NEUTRALITY GOALS 87 4.3.2 THE IMPACT OF PHOTOVOLTAIC AND WOOD STRUCTURE ON CLIMATE STRATEGIES 89 CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 92 5.1 CONCLUSIONS 92 5.2 FUTURE RESEARCH DIRECTIONS 93 CHAPTER 6 REFERENCES 96

    校園2050年達到百分百碳中和目標規劃報告, (2024). https://sdgs.csmu.edu.tw/var/file/42/1042/img/2192/220871698.pdf?utm
    中国绿色时报, & 周海宾. (2024). 林业方案助力建筑业减排 [Grant]. https://lyj.cngy.gov.cn/new/show/20240304103148808.html?utm
    王松永. (2022). 建築物之省能源、溫熱環境與木材 [Grant]. https://www.cwcba-wqac.org.tw/forest-tech/index.php?action=resources-detail&id=152&utm
    台南市政府環境保護局. (n.d.). 木料銀行. https://web.tainan.gov.tw/epb/Message.aspx?n=31270&sms=23301&utm
    本住人. (2021). 國際議題|氣候變遷改變動物習性,反撲人類社會:皇帝企鵝瀕臨滅絕、北極熊攻擊事件、傳染病擴大 [Grant]. https://vocus.cc/article/611cbd4cfd89780001e5fec0?utm
    吳佩芝, & 蘇慧貞. (2007). 氣候變遷對傳染性疾病之影響. In.
    李昕. (2024). 國際低碳校園推動作法之研析與啟示 In.
    城市綠材. (2025). 木造房屋有哪些優缺點?木構造建築分析。 [Grant]. https://www.ctgreen.com.tw/modules/news/article.php?storyid=115&utm
    建築、土木工程及建設環境訓練委員會. (2024). 2024 年建築、土木工程及建設環境業人力更新報告 In https://manpower-survey.vtc.edu.hk/f/publication/17227/Manpower%20Update%20Report%202024%20%28BCE%29%20final_chi.pdf?utm
    徐偉, 張時聰, & 楊芯岩. (2019). 木造建築全壽命期碳排放計算. In https://www.bcfii.ca/wp-content/uploads/2021/02/lca_final_report_tan_pai_fang_ji_suan_-v12-1.pdf?utm
    112年永續跨領域整合型計畫, (2023). https://ord.ncku.edu.tw/userfiles/files/20230220062652835.pdf
    教育部. (2008). 教育部永續校園計畫推動架構圖 [Grant]. https://proj.moe.edu.tw/esdtaiwan/cp.aspx?n=2347
    產品碳足跡資訊網. (2016). 國際海運貨物運輸服務(燃料油動力). https://cfp-calculate.tw/cfpc/WebPage/WebSites/CoefficientDB.aspx
    產品碳足跡資訊網. (2017). 3.49噸常溫貨車服務(裝載率31%,包含營業據點排放). Retrieved 6/1 from https://cfp-calculate.tw/cfpc/WebPage/WebSites/CoefficientDB.aspx
    台灣木構造古蹟之維護與修繕技術, (2009). https://student.hlc.edu.tw/action/file/2/20210803112053364.pdf?utm
    莊閔茜. (2024). 再生能源售電業怎麼申請?從三轉一到開放交易,綠電市場變化一篇看懂 [Grant]. https://www.reccessary.com/zh-tw/news/world-market/what-is-Renewable-Electricity-Saler?utm
    陳志賢, 曾昱中, 邱子杰, & 陳志宗. (2024). 水泥業 2050 年淨零排放路徑圖計算方法學研析. In.
    屋頂型太陽能光電板風阻形狀係數研究, (2015). https://ws.moi.gov.tw/001/Upload/OldFile/site_node_file/8015/%E3%80%90%E5%BB%BA%E7%A0%94%E6%89%80%E3%80%91%E5%B1%8B%E9%A0%82%E5%9E%8B%E5%A4%AA%E9%99%BD%E8%83%BD%E5%85%89%E9%9B%BB%E6%9D%BF%E9%A2%A8%E9%98%BB%E5%BD%A2%E7%8B%80%E4%BF%82%E6%95%B8%E7%A0%94%E7%A9%B6.pdf?utm
    結合再生能源與主動式能源建材發展, (2012). https://www.greentrade.org.tw/sites/default/files/0806_%E7%B5%90%E5%90%88%E5%86%8D%E7%94%9F%E8%83%BD%E6%BA%90%E8%88%87%E4%B8%BB%E5%8B%95%E5%BC%8F%E8%83%BD%E6%BA%90%E5%BB%BA%E6%9D%90%E7%99%BC%E5%B1%95.pdf?utm
    木構造建築物設計及施工技術規範 修訂之研究, (2012). https://ws.moi.gov.tw/Download.ashx?u=LzAwMS9VcGxvYWQvT2xkRmlsZV9BYnJpX0dvdi9yZXNlYXJjaC8xNjY4LzE0NDc5MzAwMjcxLnBkZg%3d%3d&n=Y29tcGxldGUucGRm
    經濟部能源署. (2024). 113年度電力排碳係數.
    慈濟大學. (2024). 慈濟大學推動綠色大學、永續校園
    政策報告書. In https://gm.tcu.edu.tw/wp-content/uploads/2023/08/2.%E6%B0%B8%E7%BA%8C%E6%A0%A1%E5%9C%92%E3%80%81%E7%B6%A0%E8%89%B2%E5%A4%A7%E5%AD%B8%E6%94%BF%E7%AD%96%E5%A0%B1%E5%91%8A%E6%9B%B8%E5%AE%8C%E6%88%902023.pdf?utm
    環境部. (2020). 老驥伏櫪 焚化爐整改再出發 持續邁向新里程. https://enews.moenv.gov.tw/Page/894720A1EB490390/a87b1c9c-99e4-440f-a207-9ad307895db9
    聯合國. (2015). 17項永續發展目標. https://globalgoals.tw/
    Al Zaabi, B., & Ghosh, A. (2024). Managing photovoltaic Waste: Sustainable solutions and global challenges. Solar Energy, 283, 112985. https://doi.org/https://doi.org/10.1016/j.solener.2024.112985
    Ali, A. O., Elgohr, A. T., El-Mahdy, M. H., Zohir, H. M., Emam, A. Z., Mostafa, M. G., Al-Razgan, M., Kasem, H. M., & Elhadidy, M. S. (2025). Advancements in photovoltaic technology: A comprehensive review of recent advances and future prospects. Energy Conversion and Management: X, 26, 100952. https://doi.org/https://doi.org/10.1016/j.ecmx.2025.100952
    Amorós Molina, Á., Daniel, H., Tobias, A., Maria, N., Karin, L., Helena, N., Carita, R., Rawlance, N., Rhoda, W., & and Biermann, O. (2023). Integrating the United Nations sustainable development goals into higher education globally: a scoping review. Global Health Action, 16(1), 2190649. https://doi.org/10.1080/16549716.2023.2190649
    AR6, I. (2021). Climate Change 2021: The Physical Science Basis.
    atlas, g. s. (2025). global solar atlas in Tainan NCKU (23.000218°, 120.221539°). https://globalsolaratlas.info/map?c=22.999781,120.221242,19&m=site&s=23.000218,120.221539
    Ayadi, O., Rinchi, B., Alnaser, S., & Haj-Ahmed, M. (2025). Transition towards a sustainable campus: Design, implementation, and performance of a 16 MWp solar photovoltaic system. Case Studies in Thermal Engineering, 68, 105907. https://doi.org/https://doi.org/10.1016/j.csite.2025.105907
    Balasbaneh, A. T., & Sher, W. (2024). A systematic literature review of life cycle sustainability assessment of mass timber in the construction industry toward circular economy. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-024-05377-9
    Bianco, I., Thiébat, F., Carbonaro, C., Pagliolico, S., Blengini, G. A., & Comino, E. (2021). Life Cycle Assessment (LCA)-based tools for the eco-design of wooden furniture. Journal of Cleaner Production, 324, 129249. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.129249
    Bonell, M. (2022). Comparative LCA of Lead and LFP Batteries for Automotive Applications.
    Bslbatt. (2024). How Long is The Cycle Life of LiFePo4 Solar Battery? https://www.bsl-battery.com/news/how-long-is-the-cycle-life-of-lifepo4-solar-battery?utm_
    Cellura, M., Luu, L. Q., Guarino, F., & Longo, S. (2024). A review on life cycle environmental impacts of emerging solar cells. Science of the Total Environment, 908, 168019. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.168019
    Chankseliani, M., & McCowan, T. (2021). Higher education and the Sustainable Development Goals. Higher Education, 81(1), 1-8. https://doi.org/10.1007/s10734-020-00652-w
    Churkina, G., Organschi, A., Reyer, C. P. O., Ruff, A., Vinke, K., Liu, Z., Reck, B. K., Graedel, T. E., & Schellnhuber, H. J. (2020). Buildings as a global carbon sink.
    Climatiq. (n.d.-a). Emission Factor: Copper | Materials and Manufacturing | Metals. https://www.climatiq.io/data/emission-factor/08951c4a-f0ab-4a3c-af40-e90dd646c6d4?utm
    Climatiq. (n.d.-b). Lithium iron phosphate (LiFePO4) battery (per 1kWh storage). https://www.climatiq.io/data/emission-factor/10f5da14-f244-4e7a-9c5d-dfa0940dbe21
    Corti, P., Capannolo, L., Bonomo, P., De Berardinis, P., & Frontini, F. (2020). Comparative Analysis of BIPV Solutions to Define Energy and Cost-Effectiveness in a Case Study. Energies, 13(15), 3827. https://www.mdpi.com/1996-1073/13/15/3827
    Cucchiella, F., Rotilio, M., Capannolo, L., & De Berardinis, P. (2023). Technical, economic and environmental assessment towards the sustainable goals of photovoltaic systems. Renewable and Sustainable Energy Reviews, 188, 113879. https://doi.org/https://doi.org/10.1016/j.rser.2023.113879
    Curran, M. A. (2017). Goal and Scope Definition in Life Cycle Assessment. https://link.springer.com/book/10.1007/978-94-024-0855-3
    Dias, P. R., Schmidt, L., Chang, N. L., Monteiro Lunardi, M., Deng, R., Trigger, B., Bonan Gomes, L., Egan, R., & Veit, H. (2022). High yield, low cost, environmentally friendly process to recycle silicon solar panels: Technical, economic and environmental feasibility assessment. Renewable and Sustainable Energy Reviews, 169, 112900. https://doi.org/https://doi.org/10.1016/j.rser.2022.112900
    Diniz, A. S. A. C., da Silva, G. M., Nunes, R. E. A., Santana, V. A. C., Braga, D. S., & Maia, C. B. (2024). Evaluation of solar photovoltaics on university buildings: A case study toward campus sustainability. Solar Compass, 12, 100100. https://doi.org/https://doi.org/10.1016/j.solcom.2024.100100
    Duan, Z., Huang, Q., & Zhang, Q. (2022). Life cycle assessment of mass timber construction: A review. Building and Environment, 221, 109320. https://doi.org/https://doi.org/10.1016/j.buildenv.2022.109320
    Dzhurko, D., Haacke, B., Haberbosch, A., Köhne, L., König, N., Lode, F., Marx, A., Mühlnickel, L., Neunzig, N., Niemann, A., Polewka, H., Schmidtke, L., Von der Groeben, P. L. M., Wagemann, K., Thoma, F., Bothe, C., & Churkina, G. (2024). Future buildings as carbon sinks: Comparative analysis of timber-based building typologies regarding their carbon emissions and storage [Original Research]. Frontiers in Built Environment, Volume 10 - 2024. https://www.frontiersin.org/journals/built-environment/articles/10.3389/fbuil.2024.1330105
    Filho, W. L., Trevisan, L. V., Dinis, M. A. P., Ulmer, N., Paço, A., Borsari, B., Sierra, J., & Salvia, A. (2024). Fostering students’ participation in the implementation of the sustainable development goals at higher education institutions. Discover Sustainability, 5(1), 22. https://doi.org/10.1007/s43621-024-00204-7
    Gerbinet, S., Belboom, S., & Léonard, A. (2014). Life Cycle Analysis (LCA) of photovoltaic panels: A review. Renewable and Sustainable Energy Reviews, 38, 747-753. https://doi.org/https://doi.org/10.1016/j.rser.2014.07.043
    Gholami, H., & Røstvik, H. N. (2020). Economic analysis of BIPV systems as a building envelope material for building skins in Europe. Energy, 204, 117931. https://doi.org/https://doi.org/10.1016/j.energy.2020.117931
    Greenpeace. (2020). 什麼是氣候變遷?全球暖化的原因?有哪些影響?懶人包一次告訴你 [Grant]. https://www.greenpeace.org/taiwan/update/22703/%E4%BB%80%E9%BA%BC%E6%98%AF%E6%B0%A3%E5%80%99%E8%AE%8A%E9%81%B7%EF%BC%9F%E5%85%A8%E7%90%83%E6%9A%96%E5%8C%96%E7%9A%84%E5%8E%9F%E5%9B%A0%EF%BC%9F%E6%9C%89%E5%93%AA%E4%BA%9B%E5%BD%B1%E9%9F%BF%EF%BC%9F/?utm
    Gu, H., Liang, S., & Bergman, R. (2020). Comparison of Building Construction and Life-Cycle Cost for a High-Rise Mass Timber Building with its Concrete Alternative. https://www.fpl.fs.usda.gov/documnts/pdf2020/fpl_2020_gu001.pdf
    Hart, J., & Pomponi, F. (2020). More Timber in Construction: Unanswered Questions and Future Challenges. Sustainability, 12(8), 3473. https://www.mdpi.com/2071-1050/12/8/3473
    Hauschild, M. Z., Rosenbaum, R. K., & Olsen, S. I. (2018). Life Cycle Assessment. https://link.springer.com/book/10.1007/978-3-319-56475-3
    Heliatek. (2020). Organic Photovoltaics – Truly Green Energy: “Ultra-Low Carbon Footprint”.
    Heliatek. (2024). Flex16 Research Project: New Organic Semiconductor Materials to Enhance the Efficiency of Organic Solar Cells. https://www.heliatek.com/en/media/news/detail/flex16-research-project/?utm
    Hertwich, E. G., Gibon, T., Bouman, E. A., Arvesen, A., Suh, S., Heath, G. A., Bergesen, J. D., Ramirez, A., Vega, M. I., & Shi, L. (2015). Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proceedings of the National Academy of Sciences, 112(20), 6277-6282. https://doi.org/doi:10.1073/pnas.1312753111
    Hurlimann, A., Iftikhar, N., & Liu, J. L. (2024). A framework for climate change curriculum redevelopment within built environment professional degrees [; Early Access]. Environmental Education Research, 27. https://doi.org/10.1080/13504622.2024.2403403
    information, W. w. f. a. c. (n.d.). Average Monthly Sunshine in Tainan. Retrieved 6/8 from https://weather-and-climate.com/average-monthly-hours-Sunshine,tainan-tainan-city-tw,Taiwan
    IPCC. (2006a). SOLID WASTE DISPOSAL
    IPCC. (2006b). WASTE GENERATION, COMPOSITION AND MANAGEMENT DATA
    IPCC. (n.d.). EMISSIONS FROM WASTE INCINERATION.
    Jawad, A., Hasan, M. S., Faruqui, M. F. I., & Masood, N.-A. (2023). Small-scale floating photovoltaic systems in university campus: A pathway to achieving SDG 7 goals in Bangladesh. Energy Conversion and Management, 297, 117722. https://doi.org/https://doi.org/10.1016/j.enconman.2023.117722
    Jawad, A., Hasan, M. S., Faruqui, M. F. I., & Nahid Al, M. (2023). Small-scale floating photovoltaic systems in university campus: A pathway to achieving SDG 7 goals in Bangladesh. Energy Conversion and Management, 297, 17, Article 117722. https://doi.org/10.1016/j.enconman.2023.117722
    Jiang, J., Mei, H., Wang, Y., & Zhang, T. (2025). Impact of morphological parameters on carbon emission intensity in cold-region university campus clusters: Simulation and optimization. Sustainable Cities and Society, 124, 106296. https://doi.org/https://doi.org/10.1016/j.scs.2025.106296
    Kaan, M., Bozkurt, A., Genç, M. S., & Genç, G. (2024). Optimization study of an energy storage system supplied solar and wind energy sources for green campus. Process Safety and Environmental Protection, 190, 863-872. https://doi.org/https://doi.org/10.1016/j.psep.2024.07.066
    Kursun, B. (2022). Role of solar power in shifting the Turkish electricity sector towards sustainability. Clean Energy, 6(2), 313-324. https://doi.org/10.1093/ce/zkac002
    Larivière-Lajoie, R., Blanchet, P., & Amor, B. (2022). Evaluating the importance of the embodied impacts of wall assemblies in the context of a low environmental impact energy mix. Building and Environment, 207, 108534. https://doi.org/https://doi.org/10.1016/j.buildenv.2021.108534
    Latunussa, C. E. L., Ardente, F., Blengini, G. A., & Mancini, L. (2016). Life Cycle Assessment of an innovative recycling process for crystalline silicon photovoltaic panels. Solar Energy Materials and Solar Cells, 156, 101-111. https://doi.org/https://doi.org/10.1016/j.solmat.2016.03.020
    Laurett, R., Paço, A., & Mainardes, E. W. (2022). Sustainability in higher education institutions: a case study of project FUCAPE 120% sustainable. International Journal of Sustainability in Higher Education, 23(7), 1604-1627. https://doi.org/10.1108/ijshe-02-2021-0053
    Lu Lin, D. T., Giovanni Perrucci. (2015). End-of-Life Scenarios for Mass Timber: Assumptions, Limitations and Potentials—A Literature Review. https://www.mdpi.com/2076-3417/15/3/1208?utm
    Mahmud, N. A., Dahlan, N. Y., Adnan, W. N. W. M., Tumian, A., & Onn, M. S. (2023). Optimum energy management strategy with NEM-ETOU for campus buildings installed with solar PV using EPSO. Energy Reports, 9, 54-59. https://doi.org/https://doi.org/10.1016/j.egyr.2023.09.124
    Maria Laguarda-Mallo, O. E. (2016). CROSS-LAMINATED TIMBER VS. CONCRETE/STEEL: COST COMPARISON USING A CASE STUDY. https://www.researchgate.net/publication/320739097_CROSS-LAMINATED_TIMBER_VS_CONCRETESTEEL_COST_COMPARISON_USING_A_CASE_STUDY
    Martínez-Acosta, M., Vázquez-Villegas, P., Mejía-Manzano, L. A., Soto-Inzunza, G. V., Ruiz-Aguilar, K. M., Kuhn Cuellar, L., Caratozzolo, P., & Membrillo-Hernández, J. (2023). The implementation of SDG12 in and from higher education institutions: universities as laboratories for generating sustainable cities [Original Research]. Frontiers in Sustainable Cities, Volume 5 - 2023. https://doi.org/10.3389/frsc.2023.1158464
    Matana, S., Jr., Frandoloso, M. A. L., & Briao, V. B. (2023). The role of HEIs to achieve SDG7 goals from Netzero campuses: case studies and possibilities in Brazil. International Journal of Sustainability in Higher Education, 24(2), 462-480. https://doi.org/10.1108/ijshe-07-2021-0282
    Maureen Puettmann, P. (2024). Life Cycle Assessment of Softwood Lumber Production – Southern Region.
    McCowan, T. (2023). The crosscutting impact of higher education on the Sustainable Development Goals. International Journal of Educational Development, 103, 102945. https://doi.org/https://doi.org/10.1016/j.ijedudev.2023.102945
    McKay, D. I. A., Staal, A., Abrams, J. F., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S. E., Rockström, J., & Lenton, T. M. (2022). Exceeding 1.5°C global warming could trigger multiple climate tipping points. 2025(3/24). https://dspace.library.uu.nl/bitstream/handle/1874/422858/science.abn7950.pdf?sequence=1&isAllowed=y
    McLean, M., Phelps, C., Smith, J., Maheshwari, N., Veer, V., Bushell, D., Matthews, R., Craig, B., & Moro, C. (2022). An authentic learner-centered planetary health assignment: A five-year evaluation of student choices to address Sustainable Development Goal 13 (Climate Action). Frontiers in Public Health, 10, 12, Article 1049932. https://doi.org/10.3389/fpubh.2022.1049932
    Meier, E. (n.d.). Pine Wood: An Overall Guide. https://www.wood-database.com/pine-wood-an-overall-guide/
    Memari, A. M., Iulo, L. D., Solnosky, R. L., & Stultz, C. R. (2014). Building Integrated Photovoltaic Systems for Single Family Dwellings: Innovation Concepts. https://www.scirp.org/journal/paperinformation?paperid=47261
    Monterrey, T. d. (n.d.). IFE Living Lab. https://ifelldh.tec.mx/en/living-lab
    Muteri, V., Cellura, M., Curto, D., Franzitta, V., Longo, S., Mistretta, M., & Parisi, M. L. (2020). Review on Life Cycle Assessment of Solar Photovoltaic Panels [Review]. Energies, 13(1), 38, Article 252. https://doi.org/10.3390/en13010252
    Myint, N. N., & Shafique, M. (2024). Embodied carbon emissions of buildings: Taking a step towards net zero buildings. Case Studies in Construction Materials, 20, e03024. https://doi.org/https://doi.org/10.1016/j.cscm.2024.e03024
    Nations, U. (1972). United Nations Conference on the Human Environment, 5-16 June 1972, Stockholm. Retrieved 4/1 from https://www.un.org/en/conferences/environment/stockholm1972
    Nordin, A. H. M., Sulaiman, S. I., & Shaari, S. (2022). Life cycle impact of photovoltaic module degradation on energy and environmental metrics. Energy Reports, 8, 923-931. https://doi.org/https://doi.org/10.1016/j.egyr.2022.05.257
    Oh, J.-W., Park, K.-S., Kim, H. S., Kim, I., Pang, S.-J., Ahn, K.-S., & Oh, J.-K. (2023). Comparative CO2 emissions of concrete and timber slabs with equivalent structural performance. Energy and Buildings, 281, 112768. https://doi.org/https://doi.org/10.1016/j.enbuild.2022.112768
    optics.org. (2016). Heliatek sets new record OPV efficiency of 13.2%. https://optics.org/news/7/2/15?utm
    Portillo, F., Alcayde, A., Garcia, R. M., Fernandez-Ros, M., Gazquez, J. A., & Novas, N. (2024). Life Cycle Assessment in Renewable Energy: Solar and Wind Perspectives [Review]. Environments, 11(7), 30, Article 147. https://doi.org/10.3390/environments11070147
    Preet, S., & Smith, S. T. (2024). A comprehensive review on the recycling technology of silicon based photovoltaic solar panels: Challenges and future outlook. Journal of Cleaner Production, 448, 141661. https://doi.org/https://doi.org/10.1016/j.jclepro.2024.141661
    Programme, U. N. E. (1978). Intergovernmental Conference on Environmental Education, Tbilisi, USSR, 14-26 October 1977: final report. file:///Users/apple/Desktop/Thesis%20solar%20/SIIP%20project/Energy%20saving%20university%20campus/Intergovernmental%20Conference%20on%20Environmental%20Education,%20Tbilisi,%20USSR,%2014-26%20October%201977-%20final%20report.pdf
    Programme, U. N. E., & Architecture, Y. C. f. E. (2023). Building Materials and the Climate: Constructing a New Future.
    Rajput, P., Singh, Y. K., Tiwari, G. N., Sastry, O. S., Dubey, S., & Pandey, K. (2018). Life cycle assessment of the 3.2 kW cadmium telluride (CdTe) photovoltaic system in composite climate of India. Solar Energy, 159, 415-422. https://doi.org/https://doi.org/10.1016/j.solener.2017.10.087
    Rana, P. (n.d.). What is the carbon footprint of steel? https://www.sustainable-ships.org/stories/2022/carbon-footprint-steel?utm
    Report, A. S. (2021). AR6 Synthesis Report. Retrieved 3/24 from https://www.ipcc.ch/report/ar6/syr/resources/spm-headline-statements/
    Riddle, A. A. (2023). Mass Timber: Overview and Issues for Congress. file:///Users/apple/Downloads/R47752.2.pdf
    Rinne, R., Ilgın, H. E., & Karjalainen, M. (2022). Comparative Study on Life-Cycle Assessment and Carbon Footprint of Hybrid, Concrete and Timber Apartment Buildings in Finland. International Journal of Environmental Research and Public Health, 19(2), 774. https://www.mdpi.com/1660-4601/19/2/774
    Riondet, L., Rio, M., Perrot-Bernardet, V., & Zwolinski, P. (2023). Assessing energy technologies sustainability: upscaling photovoltaics using absolute LCA. Procedia CIRP, 116, 714-719. https://doi.org/https://doi.org/10.1016/j.procir.2023.02.120
    Rogers, S. L., Jeffery, A. J., Pringle, J. K., Law, A. C., Nobajas, A., Szkornik, K., Turner, A. C., Moolna, A., & Hobson, L. (2021). The University Campus as a Learning Environment: the role of a Campus-based Living Lab in a Blended Teaching and Learning Environment. https://gc.copernicus.org/preprints/gc-2021-32/gc-2021-32.pdf
    Salvi, A., Arosio, V., Monzio Compagnoni, L., Cubiña, I., Scaccabarozzi, G., & Dotelli, G. (2023). Considering the environmental impact of circular strategies: A dynamic combination of material efficiency and LCA. Journal of Cleaner Production, 387, 135850. https://doi.org/https://doi.org/10.1016/j.jclepro.2023.135850
    service, g. s. (2022). Experimental Statistics on the carbon impact of waste from households managed by local authorities in England.
    Singh, S., Dhar, A., & Powar, S. (2024). Perspectives on life cycle analysis of solar technologies with emphasis on production in India. Journal of Environmental Management, 366, 121755. https://doi.org/https://doi.org/10.1016/j.jenvman.2024.121755
    Skullestad, J. L., Bohne, R. A., & Lohne, J. (2016). High-rise Timber Buildings as a Climate Change Mitigation Measure – A Comparative LCA of Structural System Alternatives. Energy Procedia, 96, 112-123. https://doi.org/https://doi.org/10.1016/j.egypro.2016.09.112
    Standardization, E. C. f. (2019). EN 15804+A2:2019 – Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. Brussels, Belgium: CEN.
    Standardization, I. O. f. (2006). ISO 14044:2006 Environmental management – Life cycle assessment – Requirements and guidelines. ISO.
    Standardization., I. O. f. (2006). ISO 14040:2006 Environmental management — Life cycle assessment — Principles and framework. ISO.
    Tavares, V., Soares, N., Raposo, N., Marques, P., & Freire, F. (2021). Prefabricated versus conventional construction: Comparing life-cycle impacts of alternative structural materials. Journal of Building Engineering, 41, 102705. https://doi.org/https://doi.org/10.1016/j.jobe.2021.102705
    Team, T. S. (n.d.). Density of Wood. https://blog.spib.org/density-of-wood/
    Ugural, M. N., Ozyilmaz, M. R., & Burgan, H. I. (2024). Life Cycle Assessment Analysis Based on Material Selection in Sustainable Airport Buildings. Buildings, 14(9), 2728. https://www.mdpi.com/2075-5309/14/9/2728
    University, C. (n.d.). Campus as a Living Laboratory. Retrieved 4/1 from https://sustainablecampus.cornell.edu/focus-areas/living-laboratory
    Werner, F., & Richter, K. (2007). Wooden building products in comparative LCA. The International Journal of Life Cycle Assessment, 12, 470-479. https://doi.org/10.1065/lca2007.04.317
    Wim Voskamp, D.-I. J. R. (2022). GEOSYNTHETICS, SUSTAINABILITY, DURABILITY AND THE ENVIRONMENT.
    Xu, P., Dai, Q., Gao, H., Liu, H., Zhang, M., Li, M., Chen, Y., An, K., Meng, Y. S., Liu, P., Li, Y., Spangenberger, J. S., Gaines, L., Lu, J., & Chen, Z. (2020). Efficient Direct Recycling of Lithium-Ion Battery Cathodes by Targeted Healing. Joule, 4(12), 2609-2626. https://doi.org/10.1016/j.joule.2020.10.008
    Yousef, S., & Stasiulaitiene, I. (2024). Life cycle assessment of recycling metallised food packaging plastics using mechanical, thermal and chemical processes. Heliyon, 10(16), e36547. https://doi.org/10.1016/j.heliyon.2024.e36547

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE